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El Preface III

The mathematical description of the transport of microscopic particles

such as neutrons, photons, electrons, and molecules through matter is

commonly called transport theory. These processes are important in a wide

variety of physical phenomena, and a thorough understanding of particle

transport is frequently necessary in science and engineering. This book

presents a general theory of particle transport processes. In particular, we

have drawn together and presented in a unified manner the array of

methods used to analyze transport phenomena in many fields ranging from

nuclear reactor physics and astrophysics to gas and plasma dynamics to

statistical mechanics.

This material has been developed over the past decade in a graduate

level course on transport theory at the University of Michigan. The course

was taught to students from disciplines including physics and chemistry;

nuclear, mechanical, electrical, and aerospace engineering; and applied

mathematics. The interests and demands presented by such a varied

audience quickly made it apparent how similar the applications of trans-

port theory are from field to field and how useful a unified treatment of

the subject might prove to be.

The treatment of transport theory presented here assumes a background

level of mathematics typical of most graduate students in the physical

sciences or engineering (some rudimentary knowledge of boundary value

problems, integral transforms, complex variable theory, and numerical

analysis). More specialized mathematical topics such as integral equations,

the spectral theory of operators, and generalized functions are developed

in a self-contained fashion as needed.

Although this book is intended to survey the methods used in analyzing

particle transport processes in a wide variety of fields, the overwhelming

breadth of applications makes it almost impossible to furnish a compre-

hensive bibliography. Fortunately a number of excellent review articles

that have appeared in the technical literature summarize many of these

applications and contain comprehensive reference compilations. These

articles are referenced quite frequently throughout.

Certainly very little of the material presented in such a broad treatment

can claim originality, and our effort has benefited enormously from the

knowledge, experience, and endurance of a great number of former stu-

dents, teachers, and colleagues. But a particular acknowledgment and note

of gratitude must be expressed to Noel Corngold of Caltech who provided

the first author with most of his understanding of the physics of transport

theory, to Anthony Leonard of NASA-Ames who supplied a comparable

understanding of the mathematics used to analyze transport problems, and

[I] vii
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viii U PREFACE

to colleagues at Michigan including Ziya Akcasu and Richard Osborn,

who have refined rather considerably our understanding of the statistical

mechanics foundation of the subject. This work also clearly displays the

influence of a number of other scientists whose contributions to the

modern theory of particle transport processes have been most profound:

Ivan Kuscer, K. M. Case, Paul F. Zweifel, M. M. R. Williams, Carlo

Cercignani, Kaye D. Lathrop, Sidney Yip, Robert Zwanzig, and Hazime

Mori. Without the inspiration and insight provided by the work of these

individuals, such an undertaking would have been quite impossible.

JAMES J. DUDERSTADT

WILLIAM R. MARTIN

Ann Arbor, Michigan

N ooember I 978
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D 1 El

Transport Equations

The term “transport theory” is commonly used to refer to the mathemati-

cal description of the transport of particles through a host medium. For

example, such a theory might be used to describe the diffusion of neutrons

through the uranium fuel elements of a nuclear reactor, or the diffusion of

light photons through the atmosphere, or perhaps the motion of gas

molecules as they stream about, colliding with one another. (Note that in

the last example, one cannot really distinguish the “transported” particles

from the “host medium”) Transport theory has become an extremely

important topic in physics and engineering, since particle transport

processes arise in a wide variety of physical phenomena. Much of the early

development of this theory was stimulated by astrophysical studies of

radiant energy transfer in stellar or planetary atmospheres.L2 More re-

cently, the subject of transport theory has been refined to a very high

degree for the description of neutron and gamma transport in nuclear

systems.“5 The mathematical tools used to analyze transport processes also

have been applied with some success to problems in rarefied gas dynamics

and plasma physics?12 And the list of such applications continues to

expand rapidly (as the examples listed in Table 1.1 and Figure [.1 make

apparent).

The transport processes we wish to study can involve a variety of

different types of particles such as neutrons, gas molecules, ions, electrons,

quanta (photons, phonons), or waves (provided the wavelength is much

less than a mean free path), moving through various background media

such as the components of a nuclear reactor core, stellar or planetary

atmospheres, gases, or plasmas. Transport phenomena range from random

walk processes, in which particles stream freely between random interac-

tion events, to highly ordered collective phenomena, in which large num-

bers of particles interact in a correlated fashion to give rise to wave

motion. And yet all these processes can be described by a single unifying

theory—indeed, all are governed by the same type of equation. Hence the

mathematical tools needed to study these processes are quite similar,

although the information desired and the physical interpretation of the

solutions differ quite markedly from field to field.

We are concerned with the mathematical description of the transport of

particles in matter. Transport theory differs from the usual approaches

encountered in classical physics because it is a particle, not a continuum

Ell
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2 [1 TRANSPORT EQUATIONS

Table 1.1 E] Applications of Transport Theory

Nuclear reactors

Determination of neutron distributions in reactor cores

Shielding against intense neutron and gamma radiation

Astrophysics

Diffusion of light through stellar atmospheres (radiative transfer)

Penetration of light through planetary atmospheres

Rarefied gas dynamics

Upper atmosphere physics

Sound propagation

Diffusion of molecules in gases

Charged particle transport

Multiple scattering of electrons

Gas discharge physics

Diffusion of holes and electrons in semiconductors

Development of cosmic ray showers

Transport of electromagnetic radiation

Multiple scattering of radar waves in a turbulent atmosphere

Penetration of X-rays through matter

Plasma physics

Microscopic plasma dynamics, microinstabilities

Plasma kinetic theory

Other

Traffic flow (transport of vehicles along highways)

Molecular orientations of macromolecules

The random walk of undergraduates during registration

theory of matter as, for instance, electromagnetism or fluid dynamics. The

concept of a continuous field still plays a significant role in transport

studies, but it now appears as a probability field, much as one encounters

in quantum mechanics.

To be more specific, the usual macroscopic fields encountered in physics

involve continuum descriptions. For example, in electromagnetic theory

one introduces the electric and magnetic fields E(r, t) and B(r, t) and the

charge and current densities p(r, t) and j(r, t). In hydrodynamics the field

variables are the mass density p(r,t), local flow velocity u(r, t), and local

temperature T(r, t). However in the study of particle transport, the random

nature of particle interaction events obliges us to introduce instead a field

of probability densities or distribution functions. That is, we cannot

predict with certainty the exact number of particles in a certain region at a
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TRANSPORT EQUATIONS El 3

V

Y
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--0-

k

Neutron distributions Shielding of Propagation of light

in nuclear reactors radioactive sources through stellar matter

0"60‘"

was

i —_ fire-<4?

EHJEID—>[ID fg‘g‘los

g Traffic flow Gas dynamics

Penetration of light

through the atmosphere

if

m“ w

Scattering of radar waves Configuration of Plasma dynamics

from atmospheric turbulence macromolecules

Fig. 1.] [1 Examples of transport processes.

given time, but only the expected particle density N(r,t) defined by

N“, Dds’: expected number of particles in d 3r about

r at tlme t

This density would then be described by an appropriate partial differential
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4 El TRANSPORT EQUATIONS

equation such as the diffusion equation:

aa—IY —V-DVN(r,t)= S(r,t)

It is important to stress here that N(r, t) characterizes only the expected or

average particle density at r and t. Our mathematical description of

particle transport processes involves such a statistical approach. We return

to consider this feature and provide a more precise definition of this

statistical average in the last section of this chapter.

One can distinguish between two classes of problems that arise in

transport theory. First are the direct problems in which one is given the

composition and geometry of the host medium and the location and

magnitude of any sources of particles and asked to determine the distribu-

tion of particles in the medium. This is the most common class of transport

problems. It arises in a host of applications, including nuclear reactor

theory, radiation transport, plasma physics, and gas dynamics. The second

and far more difficult class involves inverse problems in which one is given

the distribution and asked to determine characteristics of the medium

through which the particles have propagated or the sources that have

generated the particles. Such problems are encountered in fields such as

astrophysics in which one measures the intensity and spectral distribution

of light in order to infer properties of stars, and in nuclear medicine where

radioisotopes are injected into patients, and the radiation emitted by such

sources is used in diagnosis—for example, to determine whether a tumor is

present.

Although transport theory arises in a wide variety of disciplines, within

each field it has become a very specialized subject, almost an art, dealing

with the solution of a very particular type of equation. Furthermore, most

of the applications of transport theory have developed almost totally

independent of one another. For example, the essential physics of trans-

port processes was already highly developed in the kinetic theory of gases

developed by Boltzmann more than a century ago. The mathematical

methods used to solve transport equations were developed to analyze

problems in radiative transfer during the 1930s. Despite this heritage, the

field of neutron transport theory has developed almost independently of

kinetic theory or radiative transfer, partly because of the highly specialized

nature of neutron transport problems in nuclear systems, but also partly

because of the enormous emphasis placed on this discipline in the atomic

energy program. Particular emphasis was directed toward the development

of accurate computational (computer-based) methods, most of which are

quite unfamiliar to physicists in other fields.
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PARTICLE DISTRIBUTION FUNCTIONS El 5

Hence there is a very strong incentive to unify the various approaches

used to analyze and solve transport problems in different fields. The task

of drawing together these applications and presenting a general, unified

theory of particle transport processes is one of the primary motivations for

writing this book.

1.1 [I] PARTICLE DISTRIBUTION FUNCTIONS E1 The ultimate

goal of transport theory is to determine the distribution of particles in a

medium, taking account of the motion of the particles and their interac-

tions with the host medium. Although knowledge of the particle density

N(r,t) would be sufficient for most applications, unfortunately there is no

equation that adequately describes this quantity in most physical situa-

tions. Therefore we must generalize the concept of the particle density

somewhat to account for more of the independent variables that char-

acterize particle motion.

The state of a classical point particle can be characterized by specifying

the particle position r and velocity v. This level of description is usually

sufficient for describing the transport of more complicated particles (neu-

trons, photons, molecules, automobiles), since internal variables such as

spin, polarization, or structure usually do not influence the motion of the

particles as they stream freely between interactions—although such inter-

nal variables certainly influence the interactions between the particles and

the host medium. (Exceptions to this include the transport of polarized

light through an atmospherel3 and the transport of a polarized neutron

beam through a magnetic field.M We indicate later how the theory can be

generalized to account for spin or polarization effects.) Therefore it

suffices to define a particle phase space density function n(r,v,!) that

depends only on the particle position and velocity:

n(r,v, t)d3rd3v = expected number of particles in d 3r about

r with velocity in d 30 about v at time t

This function contains all the information that is usually required for the

description of transport processes. For example, we can integrate n(r, v, t)

over velocity to obtain the particle density

N(r,t) = fdsv n(r,v, t)

In certain special cases n(r,v,!) may be rather easy to calculate. For

example, if the particles are in thermal equilibrium at a temperature T,
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6 E] TRANSPORT EQUATIONS

then n(r,v,t) becomes just the familiar Maxwell-Boltzmann distribution

function

m 3/2 —mv2

n(r,V,I)->"0M(v)=”0( 21,10) expl 2” )

where no is the average number density of the particles. More generally we

are faced with solving a special type of equation for n(r, v, I) known as a

“transport” or “kinetic” equation. However it is usually possible to derive

such an equation to describe n(r, v, t) to a rather high degree of accuracy.

In kinetic theory9 it is common to normalize n(r,v,t) by dividing through

by the particle density N(r, t)

_ n(r,v, t)

f(I',V,I) -— W

This terminology is useful because f(r,v, t) can then be identified as a

probability distribution or density function with a unit normalization:

fdsof(r,v,t)=l

‘Both n(r, v, t) and f(r,v,t) contain information only about the expected

number of particles in a differential volume element of phase space,

dardsv. Neither function provides any information about higher order

statistical correlations such as the “doublet” distribution f(r1,v,,r2,v2;t)

characterizing the probability that two particles will be found simulta-

neously with coordinates in d’rl d3o,d3r2d3v2. Actually there is little inter-

est in such higher order correlations or fluctuations from n(r,v,t) for

random_walk processes in which, thepariticliof interest do no_t,intm_c_L

and ssrrslatsdglixhysnqsiatypes ouourcggo/mfitkms

(e.g., the simultaneous emission of two or more neutrons in a fission

reaction‘). However such higher order phase space densities or distribution

functions are of major interest in collective processes that are dominated

by interactions (hence correlations) among particles.

It is sometimes convenient to decompose the particle velocity vector v

into two components, one variable characterizing the particle speed, and a

second corresponding to the direction of motion. The particle kinetic

energy, =% mo2 is used frequently instead of the speedAv. To specify the

direction of particle motion, we introduce a unit vector 9 in the direction

of the velocity vector v (see Figure 1.2)

V

M =éx sin0cos¢+éy sin0sin<1>+éz cos0
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PARTICLE DISTRIBUTION FUNCTIONS El 7

X

Fig. 1.2 [I] The position and direction variables characterizing the state of a

particle.

where we have chosen to represent this direction unit vector in spherical

velocity-space coordinates (0, ¢). The particle phase space density can then

be defined in terms of these new variables as

n(r, E, Q, t)d3rdEdQ = expected number of particles in d 3r about

r with kinetic energy E in ({E moving in

direction 52 in solid angle dfl

Integration over these velocity space variables would then take the form

3 = °° 2 21r 1' ,

fd vn(r,v,t) [0 due 1;) do‘; d0s1n0n(r,o,Q,t)

=L°°dEfd§2n(r,E,QJ)

where we have identified the differential solid angle dQ=sin0d0d4>. One

can easily transform back and forth between various sets of variables by
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8 El TRANSPORT EQUATIONS

noting:

n(r,E,§Z,t)=(—'%)n(r,v,t)

n(r,v, Q, t) = vzn(r,v, t)

n(r,E,Q,t)=(Tnl—B)n(r,v,fi,t)

where E=§ mo2 and Q=v/lv|.

When the particle phase space density is written in terms of the variables

(r, E, Q, t), it is sometimes referred to as the angular density (since it

depends on the angles 0 and ¢ characterizing the direction of particle

motion) to distinguish it from the total particle density N(r, t).

A closely related concept is the phase space current density function or

angular current density j(r, v, t), which is defined by

j(r,v,t)-dSd’v=vn(r,v,t)-dSd3v= expected number of particles

that cross an area dS per sec-

ond with velocity v in dsv at

time t (see Figure 1.3)

If this quantity is integrated over particle velocities, one arrives at a

definition of the particle current density J(r, t)

J(r, t) = fd30j(r, v, t)

Q>

dS

\\\\

,/

Fig. 1.3 [I Particles incident on a surface element dS.
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DERIVATION OF THE TRANSPORT EQUATION E] 9

J (r, 1)

d8

J, (r, t) ]_ (r. t)

—> ‘—

Fig. 1.4 [1 Partial and total current densities.

Here, of course, J(r,t)-dS would be interpreted as the rate at which

particles pass through a differential surface area dS.

A similar concept is the partial current density J :(r, t), which char-

acterizes the rate at which particles flow through an area in a given

direction. That is, we define

J:(r,t)= i f d3vé;j(r,v,t)

where é, is the unit normal to the surface, and the velocity space integra-

tion is taken over only those particle directions in the positive or negative

direction (see Figure 1.4). From this definition it is apparent that

és'J(r,l) = J+(r, t) —J_(r, t)

In this sense, J(r,t) might be referred to as the “net” current density.

We have employed a consistent notation in which quantities that are

dependent on phase space or angle are denoted by lowercase symbols (e.g.,

n or j) and configuration space- or angle-integrated quantities are denoted

by uppercase symbols (N or J).

1.2 E] DERIVATION OF A GENERIC FORM OF THE TRANSPORT

EQUATION [I We now derive an exact (albeit formal) equation for the

phase space density n(r, v, t) characterizing a transport process by simply

balancing the various mechanisms by which particles can be gained or lost

from a volume of material. That is, we begin by considering an arbitrary

volume V and attempt to calculate the time rate of change of the number

of particles in this volume that have velocities v in dsv (see Figure 1.5). If
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10 [3 TRANSPORT EQUATIONS

Fig. 1.5 [I] An arbitrary volume V with

d8 surface area S.

we ignore for the moment macroscopic forces that might change the

trajectories of the particles in V, it is apparent that the only mechanisms

that can change the particle number are leakage through the surface of V,

collision events that change the particle velocities, or sources in V:

time rate change due change due

of change = to leakage + to + sources

of n through S collisions

We can express this balance condition mathematically as follows:

i a 3 _ _ - 3 3 a" 3

at fVd rn(r,v,t)d — fSdS ](r,v,t)d v+fvd {fit-Loud v

+f d3rs(r,v, t)d30

V

where we have defined the source density function s(r,v, t) and the time

rate of change due to collisions (an/80w“. If our choice of the arbitrary

volume does not depend on time, we can bring a/at inside the integral

over V. Furthermore we can use Gauss’s law to rewrite the surface integral

for the leakage contribution as a volume integral

fdS-j(r,v,t)=fd3rV-j(r,v,t)=fd3rV-vn(r,v,t)=fd3rv-Vn(r,v,t)

s V V v ‘

where we have noted that V-vn(r,v,t)=v-Vn(r,v,t), since r and v are

independent variables. Thus our balance condition can be rewritten as

follows:

an an

3 3 __ . _ _ _ =

Id rd 0{ at +v Vn (at) u s} 0 (1.1)
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DERIVATION OF THE TRANSPORT EQUATION D 11

But since V is arbitrary, Eq. 1.1 can be satisfied for all V only if the

integrand itself is identically zero:

an

2{'-+v-Vn(r,v,t)=(a—) +s(r,v,t) (1.2)

col]

8!

Hence we have arrived at an equation for the phase space density n(r, v, t).

This is the general form taken by the transport equations that characterize

particle transport processes in an enormous variety of applications.

We can give a somewhat shorter derivation of this equation (and relax

the assumption concerning macroscopic forces on the particles) by simply

equating the substantial derivativels describing the time rate of change of

the local particle density along the particle trajectory to the change in the

local density due to collisions and sources

Dn 8n

TJT—(WLHH

We can calculate Dn/Dt explicitly as

Dn 3n 6r 8n 8v.8n_8_n ‘an F_8n

E=E+W§+E a- a,“ av“; 8v

where we have introduced the obvious notation for the vector differentia-

tion operations: B/arz V (e.g., gradn = Vn = 6n /8r). Therefore we find

that the transport equation takes the form

3_n+v_3n F 8n_(8_n) +8

3! coll

3t 6r + m ' av '

The source term s(r,v,t) in this equation is usually assumed to be

specified in advance; therefore it is independent of the solution n(r, v, t).

However in certain situations (e.g., neutrons generated in a fission reac-

tion) it may be convenient to allow the source to contain an “intrinsic”

component dependent on the phase space density n(r,v,t) itself.

To proceed further, we must be a bit more specific about the collision

term (an/806°“, and this calls for a few more definitions, to enable us to

adequately describe collision processes. For the present we assume that

such collisions or interactions with the background medium occur instan-

taneously at a point in space. That is, we assume that particles stream

along until they suffer a collision, at which point they are instantaneously

absorbed or scattered to a new velocity. It should be apparent that such an

assumption would not be valid for processes in which the ranges of the

interaction forces are large, or in which the particle is absorbed, then

reemitted some time later. We patch up these deficiencies later.
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12 [3 TRANSPORT EQUATIONS

We now introduce the concept of a mean free path (mfp) to characterize

such “local” interaction events:

(mfp)—‘226,05 probability of particle interaction per

unit distance traveled by particle of

velocity v at position r

We follow the customary terminology of radiation transport by referring to

the inverse mjp E(r,v) as the macroscopic cross section characterizing the

interaction. This latter quantity can be related to the more familiar concept

of a microscopic interaction cross section 0 by noting

2(H) = NB(r)v(v)

where N 8(r) is the number density of the background medium.

We must generalize this concept a bit to describe scattering processes or

interaction processes in which the incident particle is absorbed in the

collision event and several secondary particles are then emitted (e.g.,

nuclear fission events or the stimulated emission of light). Indeed, since

transport theory is essentially just a mathematical description of “multiple

scattering” processes in which the particles of interest wander through a

medium, making numerous collisions as they go,6 it is important to

introduce the concept of a scattering probability function f (v'—>v) defined by

f(v’—>v)d3uE probability that any secondary particles

induced by an incident particle with

velocity v’ will be emitted with velocity v

in d3v

Note that f(v’—>v) is essentially just a transition probability characterizing

a change of state of the particle from v’ to v.

As a further characterization of such processes, we define the mean

number of secondary particles emitted per collision event, c(r,v), by

C(I',V)E mean number of secondary particles

emitted in a collision event experienced

by an incident particle with velocity v at

position r

It is also useful to define the collision kernel 2(v’->v) characterizing such

processes by

2(r, v’-—>v) = 2(1', v')c(r, v')f(r, v’—>v)
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DERIVATION OF THE TRANSPORT EQUATION U 13

This describes the probability per unit distance traveled that an incident

particle of velocity v’ will suffer a collision in which a secondary particle of

velocity v is produced (which may be the original particle but with a new

velocity in a simple scattering event). Note that by definition

E(r,v)= fdav’E(r,v—>v’)

Again we stress that these definitions are useful only if the collision

events are localized and uncorrelated. For example, if the particles are

wavelike (e.g., photons or quantum mechanical particles), the interaction

events would have to be sufficiently well separated to ensure the loss of

phase information from one event to another—that is, mean free paths

must be much larger than the particle wavelengths. In a similar sense, the

mean free path must be much larger than the range of the interaction

forces characterizing the collision events.

These concepts can now be used to obtain an explicit form for the

collision term (an/8t)coll appearing in the transport equation. First we note

that the frequency of collision events experienced by a particle of velocity

v is given by

02(r, v) E collision frequency

Hence the rate at which such reactions will occur in a unit volume can be

written as

02(r, v)n(r, v, t) E reaction rate density

If we now note that the rate at which particles of velocity v suffer

interactions that change their velocity or perhaps destroy the particle is

02(r, v) n(r, v, t), while the rate at which particles of different velocities v’

induce the production of secondary particles of velocity v is v’E(r,v’->v)

n(r,v',t)d3o’, we can immediately identify the collision term in the trans-

port equation as

( = f d 3o’v’2(r, v’—>v)n(r,v', t) — 02(r, v)n(r, v, t)

t coll

(If we recall the identification of E(r,v’->v) as essentially a transition

kernel, it is apparent that the collision term assumes a form reminiscent of

the master equation characterizing Markov stochastic processes.) We can

now write the general form of the transport equation as

an 8n F 8n

aw???»

+ vEn = Idsv’ v’E(v’—>v)n(r, v’, t) + s (1.3)
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l4 1:] TRANSPORT EQUATIONS

The product vn(r,v,t) in Eq. 1.3 arises so frequently in the calculation of

reaction rate densities in transport theory that it has become customary to

introduce a special notation:

<p(r, v, t) = vn(r, v, t) = angular flux or phase space flux

In a similar sense we can introduce the velocity-integrated flux:

¢(r,t)= fdsv<p(r,v,t)= fdsvvn(r,v,t)

Although it certainly proves convenient on occasion to work with q>(r,v,t)

rather than n(r, v, t), since then one does not have to worry about including

the particle speed 0 in the reaction rate densities, the tradition in some

fields (notably nuclear engineering) of referring to this quantity as a “flux”

is very misleading. For q>(r, v, t) is not at all like the fluxes encountered in

electromagnetic theory or heat conduction, since the latter fluxes are

vector quantities, whereas q>(r,v, t) is a scalar quantity. Actually the current

density J(r,t) corresponds more closely to the conventional interpretation

of a “flux.”

The units of both J(r,t) and ¢(r, t) are identical (cm'2s_'). However

J(r, t) is a vector quantity that characterizes the net rate at which particles

pass through a surface oriented in a given direction, whereas ¢(r, t) simply

characterizes the total rate at which particles pass through a unit area,

regardless of orientation. Such an interpretation would suggest that J(r, t)

is a more convenient quantity for describing particle leakage or flow (e.g.,

through a surface), and ¢(r, t) is more suitable for characterizing particle

reaction rates in which the total number of particle interactions in a sample

is of interest. Although the angular flux <p(r, v, t) and angular current

density j(r, v, t) are very simply related,

j(r, v, t)=s‘z<p(r, v, t)

it should be apparent that in general there will be no simple relationship

between 4>(r, t) and J(r, t), since these are quite different moments of the I

particle distribution function:

¢(r,t)Efd3von(r,v,t), J(r,t)E fd3vvn(r,v,t)

We pan rewrite the transport equation in terms of the angular flux

<p(r, E, 9, t) as

30> A °° , ~, , n A w,

+t2-V +2 = dE dflE(E —>E,fl—>fl)<p(r,E,n,t)+s

<P v 0 4

l

v a:

(1.4)
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DERIVATTON OF THE TRANSPORT EQUATION El 15

The transport equation (1.3) or (1.4) is an integrodifferential equation for

the unknown dependent variable n(r, v, t) with seven independent variables,

(r,v,t)=(x,y,z,vx,vy,o,,t)=(x,y,z,E,0,¢,t). If the interaction cross sec-

tions Z(r,v) and 2(r,v’->v) are regarded as known [independent of n(r,v, t)],

this equation is linear. But in many cases, (e.g., in gas dynamics or

radiative transfer) these parameters depend on the particle distribution

function and lead to a nonlinear transport equation.

To make this equation somewhat less abstract, let us apply it to the

special case in which there is plane symmetry, that is, where the density

n(r, v, t) depends only on a single spatial coordinate, say x. It is most

convenient to work with the form of the transport equation involving

<p(r, E, 82, t), since then we note that in Cartesian coordinates

a a 8 a

fi-vaxi- (0.5 +Q,—y +Q.5)<p(x>-n.$<p<x)

For convenience, we choose our angular coordinate system with its polar

coordinate axis in the x-direction such that Qx=cos0. The assumption of

plane symmetry also implies that there is no dependence on the azimuthal

angle 4:. If we furthermore introduce a new variable

pEcos0=S2x

and note that as 0 ranges between 0 and 1r, [1. ranges from 1 to — l, we can

write the one-dimensional form of the transport equation as

—l— 592 + [La—q) +Z<p= fwdE’f + ldit'Z(E'—»E,p.'—>p.)tp(x,E’,p.',t)+s

v a: 3x 0 _|

Table 1.2 gives the form of the transport equation in other coordinate

systems.

To complete our mathematical description of particle transport, we must

specify initial and boundary conditions that accompany the transport

equation. Since only a single time derivative appears in the equation, we

can simply choose the initial condition to be the specification of the initial

value of the phase space density for all positions and velocities:

initial condition: n(r,v,O) = n0(r, v), all r and v

The boundary conditions are more complicated and depend on the prob-

lem of interest. Several of the more common boundary conditions include

the following:

i Free surface. A free surface is defined such that particles can only

escape a body through the surface; they cannot reenter it. Hence we would
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Table 1.2 El The Form of the Streaming Term Q'Vq) in Common

Orthogonal Geometries

Rectangular (x, y, z): <p(x,y,z, p., x) z

aqp . 8<p 8Q)

21/2

(1 n) (cosxa +s1n)(ay)+na

Cylindrical (r, 0, z): <p(r, 0, z, [1,, x)

(l—uZY/zcosxa—qp

6r

1_ 21/2

+*—( P Sinx(a—(; 3‘‘’)+ 8‘p

D>

/

A

/ x

X

//T—_—_—T—

/ \\

,_/___\_____/

\

\__)__———-__

16E]
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DERIVATION OF THE TRANSPORT EQUATION 1:] 17

Table 1.2 [I] Continued

Spherical (r, 0. 4>)1 <P(r, 0, 4» :1, 1»)

Ltwsiflal

"a, r sinl9 in

I_ 21/2

+(_r#) “MEN—

80

]_ 2 1/2

—w sinwcotOg‘B

r 8w

demand that the density vanish on the surface for all inward directions (see

Figure 1.6):

n(R,,v,t) = 0 for all v such that v'éx <0

Of course we must be careful here to avoid “reentrant geometries” in

which the escaping particle can reenter the body at a different point. These

can usually be “patched up” by incorporating parts of the surrounding into

the specification of the system of interest. One can also impose inhomoge-

neous boundary conditions at the surface by specifying the incoming

density

n(Rs,v, t) =f(R,, v, t) for all v such that v-éI < 0

We can always replace such inhomogeneous boundary conditions by

equivalent fictitious surface sources on the boundary and return to homo-

geneous boundary conditions however.

ii Reflecting boundary. One sometimes wishes to impose a reflecting

boundary condition that essentially assumes that particles are reflected at

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

4
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



18 El TRANSPORT EQUATIONS

118

Fig. 1.6 [1 A free surface boundary.

the boundary in a billiard ball fashion (i.e., angles of incidence and

reflection are equal). Then one would require

n(Rs,v, t) = n(Rs, v,, t) for v-és < 0

where v, is defined such that v-é:=v,-és and vxv,-é,=0. Such reflecting

boundary conditions are occasionally used to express a symmetry property

of the solution. It should be noted that unlike the case of a free surface, the

reflecting boundary condition is implicit, since the outgoing density is

expressed in terms of the incoming density at the boundary.

A variation on this theme is the albedo boundary condition in which the

incoming density is reduced by a specified factor a (the “albedo”):

n(Rs, v, t) = an(R,,v,, t) for v-é, < 0

iii Periodic boundary conditions. In systems with periodic symmetry it

occasionally becomes desirable to impose periodic boundary conditions in

which the outgoing density on certain boundaries is equated with the

incoming density on other boundaries that are related by symmetry condi-

tions. Such periodic boundary conditions are particularly useful in curvi-

linear coordinates to treat the periodicity in the angle variables.

iv Interfaces. We can simply demand continuity of n(r,v, t) across

interfaces, since nothing that is of infinitesimal thickness can create or

destroy particles (aside from mathematical constructs such as surface

absorbers or sources)

n(R,, v, t) = n(R2,v, t) for all v
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DERIVATION OF THE TRANSPORT EQUATION El 19

v Infinity. We usually demand that the density be well behaved at

infinity, for example,

lim n(r,v,t) < 00

lrl—mo

(although it may prove convenient to relax this condition and allow

sources at infinity).

vi Other. A variety of more complicated boundary conditions are

utilized to characterize particle surface interactions (such as occur in gas or

plasma dynamics). We introduce these conditions later when we consider

specific applications in these fields.

Boundary conditions (in a sense) are also required in the velocity variable.

These are usually imposed implicitly by demanding a suitable behavior of

n(r,v,t) for large v (e.g., square integrability in velocity). We return to

discuss this feature when we consider the classes (or “spaces”) of allowable

solutions to the transport equation.

At this point a mathematician would ask what choices of initial and

boundary conditions will guarantee a “well-posed” problem in transport

theory. By “well-posed” he has something quite specific in mind: the

solution to the problem must exist and it must be unique; furthermore, the

solution must be stable in the sense that it is continuously dependent on

the initial and boundary data.'6 Such features have been rigorously demon-

strated for a variety of problems in transport theory (although the mathe-

matical detail is inappropriate for presentation at this point).4'l7 As a

general rule of thumb, time-dependent transport problems are well-posed if

one specifies: (i) the initial value of the phase space density n(r,v,O) in the

region of interest, (ii) the sources within this region, and (iii) the phase

space current density incident on the surface of this region. One can

furthermore demonstrate that this solution will be nonnegative if the

sources in the region and on the surface are nonnegative.

The situation becomes more complicated for time-independent solutions

to the transport equation (e.g., determining the density arising from a

steady-state source or analyzing neutron transport in a critical fission chain

reacting system). It may happen in these cases that there is no solution, or

that the solution is not unique. The key role here is played by the number

of secondaries per collision c(r,v). In general, if c< 1, it can be demon-

strated that the stationary distribution in the region is determined by the

sources in the region and the incident distribution on the bounding

surface. For c> 1, solutions to the time-independent transport equation

may not be unique (if they exist at all). (These statements will not be

surprising to readers familiar with the theory of fission chain reactions.)
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20 1:] TRANSPORT EQUATIONS

1.3 III A BRIEF COMPARISON OF VARIOUS PARTICLE TRANS-

PORT THEORIES [3 To illustrate the manner in which the concepts we

have introduced arise in various fields, we very briefly present the form

taken by the transport equation in several of the more popular applica-

tions. We also list several examples of typical transport problems that are

encountered in each of these fields. A far more thorough discussion is

given in later chapters. ’

1.3.1 [I Neutron Transport [1 To describe the diffusion of neutrons

through a medium, we define n(r,v, t) to be the neutron phase space

density and interpret 2(r, v) as the macroscopic cross section characterizing

neutron-nuclear interactions.H Since neutron transport theory is essen-

tially just a specialized form of the kinetic theory of gases in which the

neutron gas diffuses through the background “gas” of nuclei, we might

expect that the concepts and notation of gas kinetic theory could be

adapted directly. However because of the rather specialized nature of the

problems and the approximations utilized in neutron transport, it is

customary to adopt a somewhat different notation:

iii—‘f + Q- V<p +Z,(p = LwdE'fdr‘z'2s(E'_>E,Q'_>Q)q>(r,Ego’, :) +s

(1.5)

with initial and boundary conditions

<P(r,E, 9,0) = %(P,E, SA1)

<p(Rs, E, Q, t) = 0, Q ‘e, < 0 (free surface)

In fission chain reacting systems, the source contribution from fission

neutrons is explicitly extracted and written as

sf(r,E,§2,t)= % LwdE’fdQ’v(E’)Ef(E’)<p(r,E’,Qflt)

where r/(E’) is the average number of neutrons released per fission event,

and X(E) is the energy distribution or spectrum of the fission neutrons.

Sample problems:

i Determine the neutron flux resulting from a source (subcritical media).

(a) Sources in infinite media (plane or point).

(b) Behavior of flux near a free surface (Milne problem).
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VARIOUS PARTICLE TRANSPORT THEORIES [I 21

(c) Reflection of neutrons from a surface or interface (albedo prob-

lem).

(d) Finite geometry problems (slabs or spheres).

ii Criticality problems. Determine the system composition and geome-

try such that fission neutron production just balances neutron ab-

sorption and leakage to yield a time-independent solution to the

transport equation (in the absence of sources).

iii Time-dependent problems.

(a) Initial value problems (pulsed neutron problem).

(b) Response to time-modulated sources (neutron wave problem).

1.3.2 [I Photon Transport and Radiative Transfer E] To describe the

transport of low energy photons (light) through matter (e.g., a stellar or

planetary atmosphere), we define the photon energy intensity as the

product of the photon energy hr and photon flux cn(r, E, Q, t):"‘"9

I,(r, (2,1) =(hv)cn(r, E, Q, t)

The corresponding form of the transport equation (now referred to as the

radiative transfer equation) is

181

c at" +Q-Vl,=p(r,t)[—:<;(r,Q,t)I,(r,Q,t)+e,(r,Q,l)] (1.6)

where p(r,t)=local matter density

x,’,(r, Q, t) = absorption coefficient

e,(r, Q, t) = emission coefficient

In local thermodynamic equilibrium, one can simplify this to write

1 61,

c 8!

+Q'Vl,,=px,',[ — Iy+ S,]

where the emission term is given by

2hr’3 hv "_

Sp— CZ [CXp(fi)—l:l =3,

If we wish to include the process of photon elastic scattering, we can

generalize Eq. 1.6 to

161, A _ , - d—Q

?_$+fl-VI,-P“v[ IVWBMI ml 4wl’i
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22 El TRANSPORT EQUATIONS

where y, is the ratio of capture cross section to total cross section. It is

customary to average this equation over frequency (which yields the

analogue to the one-speed neutron transport equation). The frequency

averaged interaction parameters (x) are referred to as opacities. However,

even in thermodynamic equilibrium, these opacities depend on tempera-

ture T, hence on the intensity 1,, and lead to a nonlinear transport

problem.

Sample problems:

i High energy gamma transport, deep penetration and shielding.

ii Classical stellar atmosphere (Milne problem).

iii Radiation penetration into planetary atmospheres (albedo).

iv Radiative transfer in plasmas.

1.3.3 El Gas Dynamics [3 We now picture the transport process as the

motion of gas molecules as they move about, colliding with one another.

To this end, we regard n(r, v, t) as the phase space density of gas mole-

cules.7"'° If the gas is sufficiently dilute that we need only consider binary

interaction events, the appropriate transport equation for n(r, v, t) takes a

rather famous form known as the Boltzmann equation:

% +v'Vn=fd3vlIdQ|v1—v|a(§l,|vl—v|)[n(v§)n(v’)—n(vl)n(v)]

(1.7)

Here the primes indicate the molecular velocities prior to the collision

event, and n(v) is just a shorthand notation for n(r, v, t). It is important to

note that this equation contains a quadratic nonlinearity.

We can linearize the Boltzmann equation for small disturbances about

the equilibrium distribution n0(v) = nOM(v) by defining

n(r,v,t)=n0(v)+nl(l‘,v,t), l|"i||<<||"o||

Then if we substitute this into the Boltzmann equation and retain only

first-order terms in the perturbation n1(r,v, t), we arrive at the linearized

Boltzmann equation:

2:7‘ ‘HI-V"!=fdsolfdfilvl_v|°"0(v)["|(vi)+"i(vl)_"i(vi)_"i(v)]

If we identify n0(v)a(§2,|vl—v|) as just the collision or scattering kernel
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VARIOUS PARTICLE TRANSPORT THEORIES E] B

Es(v'—>v), this equation takes a form that is very similar to that of the

transport equation characterizing neutron and photon transport (for finite

range intermolecular potentials, at least). But the physics represented by

this equation is considerably different, since it characterizes the collective

motions of a gas rather than the diffusion of particles through a back-

ground medium.

Sample problems:

i Steady flow (Couette flow, gas-surface interactions, heat transfer).

ii Free and forced sound wave propagation.

iii Shock wave propagation.

1.3.4 El High Energy, Charged Particle Transport [1 One might be

tempted to apply a transport equation similar to that used to describe

neutron or photon transport to processes involving high energy charged

particles (e.g., electrons or light ions). However two quite different physical

phenomena characterize the transport of light charged particles, and they

lead to a somewhat different mathematical approach:

i The strong, but infrequent collisions of the particles with heavy ions

in which little energy transfer occurs.

ii Frequent weak collisions with atomic electrons, which give rise to very

irregular particle trajectories.

Hence one usually begins the study of charged particle transport by using

an energy-independent description to account for elastic collisions with

heavy ionslg‘zl

git” +s‘z-vq>+2,¢= fdo'2,(r‘r-.§z)<p(r,v,r“z',r)+8 (1.8)

cal—-

and then introduces the frequent, weak collisions, which give rise to energy

loss by using a continuous slowing down theory in which it is assumed that

the energy loss over a given path length .E is known and specified in terms

of dE/d£. Then using d£=vdt, one can transform the independent vari-

able in Eq. 1.8 to rewrite the equation characterizing charged particle

transport as

8% +s‘z-v<p+2,<p= fdS'l’2,(SAZ’—>Q)<p(§2’)+s
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24 El TRANSPORT EQUATIONS

Sample problems:

i Shielding against charged particle radiation.

ii Electron plasma production using high energy electron beams.

1.3.5 [1 Transport in Ionized Gases and Plasmas E1 The dynamics of an

ionized gas or plasma is influenced enormously by the long-range nature of

the Coulomb interaction. This produces a variety of complex phenomena

including the interaction of the particle transport with collective (wavelike)

modes. If we apply the general form of the transport equation (1.3) to a

given species, say the electrons, we would write

fine 8n

+ .

e e 8ne_ an,

at v F‘EGIHXB) 3V _( at )coll (1.9)

In the study of transport in ionized gases that are characterized by rather

large Debye lengths so that collective effects need not be considered, we

are usually given the electric and magnetic fields E(r, t) and B(r, t). Then

we can merely solve Eq. 1.9 as we would the equation characterizing high

energy charged particle transport.”23

In a plasma, which by definition is an ionized gas with a Debye length

small compared to system size, collective motions are very important, and

E(r, t) and B(r,t) must be determined self-consistently using Maxwell’s

equations.“12 For example, a common problem involves the study of

electrostatic oscillations in the electron density which are typically mod-

eled by ignoring the collision term in Eq. 1.9 and writing it as

fine Zine _ i Zine _

at“ 81' m av

0 (1.10)

where the electric field E(r, t) is then determined by Poisson’s equation

gr -E= —4'rrefd3v[ne(v)—n,-(v)]

(A similar equation would be needed for the ion density.) This equation in

which collisions have been neglected but in which the self-consistent

nature of the electric field has been treated explicitly is known as the

Vlasov equation. It forms the basis for 99.9% of modern plasma physics.

Like the Boltzmann equation, it is nonlinear. But also like the Boltzmann

equation, it can be linearized about a stationary homogeneous distribution

ne0(v) by substituting

"AH, t) = ne0(v) + "AFN, 1), ||nel|l<<l|ne0||
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VARIOUS PARTICLE TRANSPORT 'I'HEORIES [I] 25

into the Vlasov equation (1.10) and neglecting second order terms in

nel(r, v, t) to find the linearized Vlasov equation

8n,l 3ncl eEl an,0_

at +v 81' m 8v

———-El = —4wefd3vne|(v)

If it is necessary to consider collisions as well, then one can choose from

several possible forms of the collision tenn (an/800°":

i Boltzmann collision term:

? Id’vlfdfilvl "log-(M. —v|)[n,-(v'.>n.-(v')—n(v.)n.(v>]

where a “Debye-shielded” Coulomb potential is used to calculate the

scattering cross section 0,--.

ii Fokker-Planck collision term:

3_" =8. JIFP 1.2 /_ 2

(8t )coll av fduQ (v’v)[8vn(v) n(v) 8v’

where.

2 _

Qr-‘PE 14(8 13 fig), gEv_v,

A = — "owed ln (kT)3

m2 4'rrn0e6

iii Balescu-Lenard collision term:

(% )coll : 5v .fdsv/QBL(v’v/)‘[ n(V') -‘ "(0257 l

where

(277)3"0 V2(k)(11/m)2

kk - A

BL=_ 3_ ._ .'

Q - fdkksp‘v “1 |D+(-k,ik-v)

while D(k,z) is the plasma dielectric function (see Section 3.3).
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26 El TRANSPORT EQUATIONS

Sample problems:

i Wave propagation in plasmas.

ii Microinstabilities [i.e., instabilities in n(r,v,t)].

iii Plasma turbulence.

iv Propagation of shock waves in plasmas.

1.3.6 I] Some Generalizations of the Transport Equation El Thus far our

discussion of transport theory has been confined to processes in which the

collision or interaction events could be described as essentially localized in

time and space. But, of course, there are a variety of transport processes in

which one can no longer assume that the particle mean free path is much

larger than the range of the interaction forces (e.g., a plasma or a dense

gas). For such processes one must generalize the form of the transport

equation to allow for collision events that are not necessarily instantaneous

or localized in space. It is possible to demonstrate (using techniques from

statistical mechanics, discussed in the next section) that the most general

form of the transport equation can be written as

an ,.a+_F_.a»_

8t 8r m 8v-

fIdrfd3r’fdsv’E(v’—>v,r'—+r,t—'r)n(r’,v’,'r)

0

+ 6D(r, v, t)

(1.11)

where the collision term has been generalized to account for nonlocalized

processes. The term 6D(r,v, t) which appears in this equation depends on

the initial value of the density and frequently vanishes in time rapidly

enough that it can be ignored.

It should be noted that the essential transport character of the equation

that appears in the streaming terms 8n/8t+v-8n/8r+F/m-(8n/8v) is

maintained even in this far more general formulation. Of course Eq. 1.11 is

of only formal interest until one can determine the generalized collision

kernels 2(v'—>v, r’ —>r,t— 1). Although explicit expressions for these kernels

can be written down in terms of the microscopic behavior of the host

material, the specific determination of these quantities remains a formid-

able task, and they are usually approximated using modeled calculations or

experimental measurements. In many cases the collision kernels will de-

pend in a nonlinear fashion on the particle distribution function n(r, v, t).
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TRANSPORT THEORY AND KINETIC THEORY [l 27

1.4 D THE RELATIONSHIP BETWEEN TRANSPORT THEORY

AND KINETIC THEORY 1] Transport theory is actually a very re-

stricted subset of the more general topic of kinetic theory. One can

distinguish between the two subjects by noting that kinetic theory is usually

regarded as the aspect of statistical mechanics that is concerned with the

derivation and study of equations for the particle phase space density

n(r,v,t) or distribution function f(r,v,t). Such “kinetic equations” or

“transport equations” are typified by the Boltzmann equation for a dilute

gas, the neutron transport equation, or the Vlasov equation for a plasma.

We regard transport theory as the more restricted mathematical discipline

concerned with the solution of such kinetic equations and the application

of such solutions to the study of particle transport processes.

Traditionally, transport theorists have concerned themselves with trans-

port processes such as neutron diffusion, radiative transfer, or rarefied gas

dynamics—all of which are characterized by particle mean free paths that

are many times greater than the range over which a collision event takes

place. That is, the particle transport process is dominated by particle

streaming between collisions. The transport equation describing such

processes in “dilute” systems is just the Boltzmann equation—either in its

linear form for neutron or photon transport, or in its nonlinear form for

the transport of molecules in a dilute gas.

However one can also consider transport processes in very dense sys-

tems in which the mean free path is comparable to the collision length.

Such phenomena arise, for example, when we study the motions of

molecules in a liquid or electrons in a plasma. Of course the physics of

such transport processes is radically different, since now collision events

dominate streaming behavior. Furthermore, the task of constructing a

kinetic theory of such dense systems is far from trivial, and it has only

recently begun to yield to the powerful tools of nonequilibrium statistical

mechanics. Surprisingly enough, however, the mathematical features of the

kinetic or transport equations that have been obtained for dense systems

are remarkably similar to features more familiar from transport theories

based on the Boltzmann or Boltzmannlike equations.

To indicate this more clearly, we briefly review the subject of kinetic

theory (and transport theory) from the more general perspective of non-

equilibrium statistical mechanics. To this end, we discuss several of the

‘Occasionally one encounters a more precise definition of a kinetic equation as an

equation for n(r, v, t) of the form 8n/81- Alr, v; n(r,v,t)], where A is a time-

independent functional of n(r,v,t). We relax this definition somewhat by referring to any

equation for n(r,v,t) or similar phase space quantities as a kinetic equation (including

time-dependent functionals Aln; t] in this definition).
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28 E] TRANSPORT EQUATIONS

more successful methods for deriving kinetic theory descriptions of many

particle systems?“26

1.4.1 I] Nonequilibrium Statistical Mechanics III The primary goal of

any theory of a many particle system is to explain the macroscopic

behavior of such a system in terms of the microscopic dynamics of the

particles involved. For example, in the study of neutron transport, the

primary goal is usually the calculation of various neutron-nuclear interac-

tion rates—that is, weighted integrals of the neutron density. Frequently it

suffices to determine the neutron density using a simple diffusion equation

description. More frequently, however, one must go to a slightly more

detailed description in the form of the angular density n(r,v,t) and the

associated neutron transport equation. Of course, even the neutron trans-

port equation is only an approximate representation (albeit a very accurate

approximation) to the true motions of the neutron-nuclei many body

system that are actually described by quantum statistical mechanics.27

In a similar manner one can analyze a gas either on a hydrodynamical

level (e.g., the Navier-Stokes equations), by way of kinetic theory (the

Boltzmann equation), or by studying the actual equations of motion for,

the gas molecules. The level of description one chooses depends on the

Wof—behavior to be investigated. For example, a hydrodynamic descrip-

tion is usually sufficient to describe flow processes, whereas a kinetic

description is necessary to analyze high frequency sound propagation or

light scattering from gases. For very short wavelength, high frequency

behavior, such as is encountered in inelastic neutron scattering or laser

light scattering from plasmas, one may have to revert to the actual

equations of motion themselves.

The mechanisms by which one passes from the microscopic equations of

motion to kinetic theory and eventually to a hydrodynamical description

make up the discipline of nonequilibrium statistical mechanics (NESM). In

principle the macroscopic properties of a many body system can be

defined as various averages over the possible microscopic motions of

particles in the system. In this sense, then, statistical mechanics seeks to

determine the relation between these macroscopic quantities directly from

a knowledge of the equations of motion on a microscopic level.

On this microscopic level, particles undergo complicated motions under

the influence of their mutual interactions, and these motions are governed

by well-known laws of mechanics (either classical or quantum):

dxi _ dv, _ 1 __

W—Vl-(l), 7— mF(Xi(l),l), l—I,...,N
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TRANSPORT THEORY AND KINETIC THEORY El 29

Hence given an initial value of the coordinates and momenta of all

the N particles (xl,v|,...,xN,vN)EI‘N(0), we can in principle solve these

equations to determine the trajectories of all N particles

[x,(t),v,(t),...,xN(t),vN(t)]=I‘N(t). That is, the time evolution of the sys-

tem takes the form of the trajectory of the phase point I‘N(t) as it wanders

about in a 6N-dimensional phase space (see Figure 1.7). The location of

this phase point at any given instant t completely specifies the state of the

system, since it gives xJ-(t),vj(t) for each of the N particles. From the first

order equations of motion, we can see that a given initial value for I‘N(0)

will uniquely determine the state of the system at any later time 1. Any

physical measurement will presumably be a time average over this motion.

That is, if A is a function of the state of the system, A=A(I‘N) (A is

referred to as a dynamical variable), we associate a physical measurement

with the time average of A defined as

T

<A>TE T131; iTfo Mum)

It is clearly hopeless to attempt to solve directly the equations of motion

for a system of N interacting particles. Furthermore, a particular solution

of these equations requires a knowledge of the initial coordinates and

momenta of each of the N particles. Such detailed information is impossi-

ble to obtain in practice. In fact we can hope to know only a few gross

properties of the system of particles, such as its total energy or momentum.

There are a very great number of points I‘,,, in phase space—that is, a very

great number of configurations of our system—that are compatible with

the values of the limited number of variables we are at liberty to specify.

These considerations led Gibbs to propose that instead of considering a

single dynamical system as the object of interest, one should study the

average properties of a collection or “ensemble” of systems, each identical

with respect to the gross macroscopic variables that can be specified, but

whose distribution in phase space is otherwise unspecified.28 This ensemble

Ht) = (x, (t),..., vN(t))

N0) = (x,(0),..., v~(0))

Fig. 1.7 U The T-space trajectory of a many body system.
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30 [1 TRANSPORT EQUATIONS

is to be specified by a function giving the probability density of a system in

the ensemble having its representative phase point at a point I‘,V of phase

space. This probability density function is called the ensemble distribution

function or ensemble density and is denoted by p(I‘N,t).

Actually we are not interested in the ensemble density p(l‘N,t) itself.

Rather, our interest arises because a knowledge of p(I‘N,t) permits us, in

principle, to compute ensemble averages of dynamical variables. That is, if

A(I‘N) is the dynamical variable of interest, the ensemble average of A is

defined to be

<A>E fdr~p(r~.r)A(r~)

The fundamental postulate of statistical mechanics is that such ensemble

averages can be identified as the measured macroscopic properties of the

system. But we have also said that such measurements correspond to time

averages. Hence this postulate assumes that we can equate ensemble

averages with time averages:

fdr~p(r~.1)A(r~)=T1im i, foTdr/urm)

The study of the conditions under which this equality is valid comprises

the famous “ergodic problem” of mechanics, and the rigorous justification

of statistical mechanics rests on this result.26 We can bypass the modern

theory of mechanics and ergodicity entirely by simply assuming that the

results of experimental measurements performed on many body systems

can always be expressed in terms of ensemble averages.

Hence “all” we have to do is calculate p(I‘N,t) for a given system, then

use this quantity to calculate all observed macroscopic properties as

ensemble averages. Using Hamilton’s equations, we can derive a first order

partial differential equation, the Liouville equation,”28 which describes the

time evolution of the ensemble distribution function p(I‘N,t) from a given

initial value p(I‘N,O):

a N a 1 a .

a—’,’={H.p}=-21(w-g+—E'w)p<r~.t)E—1Lp (1-13)

i= m

where { is the Poisson bracket, and we have defined the Liouoille

operator L=i m"

This equation is actually just a compact notation for the full set of the

equations of motion for the N particles, subject to a statistical distribution

of initial values given by p(l‘N,0). Hence the solution of the Liouville
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TRANSPORT THEORY AND KINETIC THEORY U 31

equation is equivalent to the solution of the equations of motion them-

selves. Nevertheless, it is possible to obtain general information concerning

the time behavior of macroscopic properties (ensemble averages) from the

Liouville equation by formal manipulations and suitable approximations.

It should be mentioned here that an analogous development applies for

quantum mechanical systems. Now p(t) is interpreted as the density

operator or density matrix that satisfies

and the ensemble average of an observable corresponding to an operator A

is given by

<A(I)>=TY{AP(I)}

Since we deal primarily with classical systems, we use the notation of

classical mechanics in this book. Because of the formal similarities between

the classical and quantum descriptions, however, most of our discussion

can be carried over rather directly to quantum mechanical systems.

Therefore our primary goal is the calculation of ensemble averages of

various dynamical variables of interest. That is, if A(I‘N) denotes a dynami-

cal variable dependent on the state I‘N of the system, then the ensemble

average <A(t)> is calculated as

<A<o>=fdr~p(r~.r)/1(r~>= fdr~p(r~.0)A(r~ (o) (114)

It has been explicitly noted here that one can include the time dependence

of this average either in p(I‘N,t) or in the dynamical variable A(I‘N) itself.

In the latter formalism, A(t) is given as the solution of

dA .

I —ILA(I)

Usually the dynamical variables of interest depend only on the coordi-

nates of one or two particles, or perhaps they involve a sum of such terms

[e.g., A(I‘N)=A(xl,vl) or A(I‘N)=2jA(xJ-,vj)]. Hence it is useful to seek a

reduced or contracted description of the system by defining quantities such

as the single-particle distribution function

fo‘l’Vi’OEj-dl-‘N- 19am’)
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32 [:1 TRANSPORT EQUATIONS

Then f (xl,vl,t) can be used to calculate ensemble averages such as

<A(t)>=fd3xrfd3011-(Xhvv014(7‘1’“)

Of course it is necessary to obtain an equation describing the time

evolution of f (xl,vl,t)=(l / n0)n(x1,v1,t), and this is the objective of kinetic

theory.

It is possible to go even further and obtain equations directly for the

ensemble averaged quantities <A(t)> themselves. It is customary to refer to

such systems of equations as a “hydrodynamic-like” description. For

example, in neutron transport, the hydrodynamic level of description is

just the neutron diffusion equation

aa—IY — 0D V2N(r, t) = - vEaN(r, t) + S(r, t)

where we define the ensemble averaged dynamical variable corresponding

to density as

N(r,t)E< é‘ 8(r—xJ-(t))> E<1\7(r,t)>

Frequently the goal of NESM is to derive such hydrodynamic equations

for such a system.’ These equations contain various parameters known as

transport coefficients (diffusion coefficients, viscosities, conductivities,

etc.), which must be evaluated in terms of a more detailed description such

as kinetic theory or the equations of motion themselves.29

Our attention is directed instead toward the kinetic theory level of

description (i.e., transport theory) in this “mechanics-kinetic theory—

hydrodynamics” hierarchy (see Figure 1.8). This level concerns itself with

the particle phase space density, which can also be written as the ensemble

average of a microscopic dynamical variable:

n(r,v,t)=< g 8(r—xJ-(t))8(v—vj(t))> E<fi(r,v,t)> (1.15)

j=l

Yet another major concern in NESM is the calculation of various

equilibrium time correlation functions among dynamical variables,30

(A(0)A(t)>eq or <A(0)B(t)>eq, since the dynamical behavior of a many

body system can frequently be characterized rather completely by such

functions. In particular, transport coefficients can be expressed formally in
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Microscopic level: equations of motion

Liouville equation

% = {H.p} = - tiara‘) <A<1>>E f dram. 1mm

(Newton's laws or Heisenberg equations)

(1!)

Kinetic level

Kinetic equation

a , ,1

all‘ = A[r,v; n(r, v, 1)] <.4(:)> = fd3rfd3u[1(-%21A(r,v)

(Boltzmann equation. neutron transport equation.

Vlasov equation)

(b)

Hydrodynamic level

Conservation equations

aN N

W + v mm) = 0 ~<r.o-< 2| 8(r—x,-(r»>

,-

Transport equations

J(r, r) = - D(r)V N(r, 1)

(Navier-Stokes equations, neutron diffusion equation)

(6)

Fig. 1.8 [:1 A flow chart of the various levels of description in NESM. (a)

Microscopic level: Liouville equation in 6N F-space. (b) Kinetic level: contracted

description in six-dimensional phase space. (c) Hydrodynamic level: contracted

still further to three-dimensional configuration space.
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34 1:1 TRANSPORT EQUATIONS

terms of time correlation functions. Moreover, most experimental tech-

niques for investigating dense systems (neutron or light scattering) measure

such time correlation functions directly (usually the density-density corre-

lation function)?‘32 Hence a very considerable effort has been directed at

determining these quantities. Once again one can proceed either by a

kinetic or a hydrodynamic description. For example, to study density-

density correlations, we can develop hydrodynamic-like equations for

<N(r,0)N(r',t)> or we can study a kinetic equation description of the

generalization of this time correlation function to phase space

<ri(r, v, 0)ri(r', v’, 1)).

1.4.2 [1 Recent Developments in Kinetic Theory E1 The development of

the kinetic theory of gases can be traced back to the work of Maxwell,

Rayleigh, Boltzmann, and others more than a century ago.33 Prior to 1940,

kinetic theory descriptions of many particle systems rested primarily on

various phenomenological transport equations such as the BoltzmannM or

Fokker-Planck35 equations, which are reviewed in some detail in Chapter

3.

The modern development of kinetic theory for classical systems

originated with the attempts of Kirkwood36 and Bogoliubov37 in 1945 to

derive in a rigorous fashion kinetic equations such as the Boltzmann

equation directly from the microscopic equations of motion for a many

body system. Subsequent developments in kinetic theory have been varied

and voluminous. Figure 1.9 summarizes the more significant methods for

deriving kinetic equations. Among the more popular approaches have been

the following.

Methods Based on the BBGK Y Hierarchy El Bogoliubov (and Born,

Green, Kirkwood, and Yvon) demonstrated that it is possible to derive a

hierarchy of equations (the BBGKY equations) for the s-particle distribu-

tion functions j;(x1,vl,...,xS,v,; t) characterizing a many body system. He

‘then took advantage of the different characteristic time scales involved in

gas dynamics (i.e., the time of a collision compared to the time between

collisions) to postulate an ansatz in which all higher order distribution

functions fI appearing in the BBGKY hierarchy were expressed as time-in-

dependent functionals of the single particle distribution function f|(x|,v|, t).

By introducing a density expansion of the BBGKY system subject to this

ansatz or guess, Bogoliubov was then able to obtain an equation for fl to

various orders in density. When carried out to the first order in density,

this theory yields the Boltzmann equation. Choh and Uhlenbeck38 formally

calculated the next order term in this density expansion (which involves
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Fig. 1.9 E] A map of nonequilibrium statistical mechanics.
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36 [1 TRANSPORT EQUATIONS

three-body collisions). Subsequent work by Cohen,39 Green“, and others

has demonstrated that Bogoliubov’s method is equivalent to a cluster

expansion (similar to the Mayer expansion, familiar from equilibrium

statistical mechanics). Rostoker and Rosenbluth"l used similar cluster

expansions to derive the Vlasov and generalized Fokker-Planck equations

for a plasma. Frieman and Sandri“2 have used time scaling perturbation

theory to truncate the BBGKY hierarchy and derive kinetic equations for

gases and plasmas.

However during the mid-1960s it was demonstrated that such cluster

(density) expansions lead to divergent corrections to the Boltzmann equa-

tion.“3 Such divergences cast considerable doubt on the validity of the

standard methods for truncating the BBGKY hierarchy and furthermore

have raised speculations concerning whether a kinetic equation even exists

for dense systems (i.e., whether Bogoliubov’s functional ansatz is valid).

Such questions have been answered to some degree by the development of

“renormalized” kinetic theories by Mazenko, Dorfman, and others.

Modern Perturbation Theory III The powerful techniques of" diagrammatic

perturbation theory familiar from quantum field theory, have beenappliemdfl

maria" the “classical Liouville equation by Prigogine,“ Balescu,“5

Severne,“6 and others to derive kinetic equations (e.g., the Boltzmann,

Fokker-Planck, Vlasov, and Balescu-Lenard equations). More recently,

Green’s function techniques"7 have been applied to the kinetic theory of

weakly coupled classical systems by Forster and Martin“8 and to low

density systems by Mazenko.“9

Klimontovich Fonnalism El Klimontovich50 has developed a powerful for-

malism that has been applied with considerable success in plasma

physics.51 This scheme proceeds from an equation of motion for the

microscopic phase space density ri(r, v, t) (defined in Eq. 1.15), which takes

the form

dfi 8n

_ . A_i 3/ 3 r_a_ __ e / . a A __

at +v 8r mfdrfdv at V(|r r’|)n(r’,v,t) a"n(r,v,t)-0

(1.16)

and essentially involves the development of a hierarchy for the time

correlation functions of ri(r, v, t).

Time Correlation Functions and Linear Response Theory [I A number of

schemes have been developed specifically for calculating equilibrium time

correlation functions among dynamical variables. These include the sum
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TRANSPORT THEORY AND KINETIC THEORY l] 37

rule—dispersion relation methods of Kadanoff, Martin, and Yipsz'53 and the

direct perturbation techniques of Cohen and Dorfman,54 Resibois,55 and

others.56 Several theories have been based on kinetic or transport equations

for the phase space generalizations of the time correlation functions of

interest.

Projection Operator Techniques E] A very powerful and elegant procedure

for deriving kinetic equations that has only recently received detailed

attention is based on the projection operator techniques developed by

Zwanzig57 and Mori.58 This scheme uses projection operator algebra to

transform the Liouville equation into an alternative representation—either

a “generalized master equation” or a “generalized Langevin equation”—

and one proceeds to develop kinetic equations from this point. These

generalized kinetic equations are formal identities with the equations of

motion; therefore they are quite exact and contain all the information (and

complexity) of the microscopic particle dynamics. However such equations

have proved to be a very useful framework on which to base approximate

theories of many body systems. For example, Akcasu and DuderstadtS9

have used this method to develop a kinetic equation that is rigorously

correct to first order in the interaction potential for all frequencies and

wavelengths. Mazenko,60 Gould,"l and Baus62 have applied similar

methods to develop the analogous kinetic equation generalizations of the

Boltzmann and Balescu-Lenard equations. More recently, Mazenk063’ 6‘

and others have developed renormalized kinetic theories in which the usual

low density form of the kinetic equation for f](x,v, t) is renormalized to

include higher order correlation effects.

It should be stressed that although these elaborate approaches may

appear quite different and abstract, they are in reality nothing more than

schemes for introducing approximations into the equations of motion, to

derive simpler descriptions of many particle dynamics (e.g., kinetic equa-

tions or hydrodynamic equations). Frequently, the approximations in-

troduced are based on some type of perturbation theory, for example,65

density expansions (n r3<< l) —>Boltzmann equation

weak-coupling expansions ( V / kT<< l) —>Fokker-Planck equation

plasma parameter (1 / n r13,<< l) —>Vlasov or Balescu-Lenard equation

It is possible as well to introduce modeled approximations into the deriva-

tion of kinetic equations (similar to the Bhatnager-Gross-Krook66 model

familiar from gas dynamics), and indeed we consider several such modeled

kinetic equations in Chapter 3.
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38 U TRANSPORT EQUATIONS

1.5 El SCOPE OF TREATISE D We have chosen to define transport

theory as the mathematical description of particle transport, and in an

even more restricted sense as the mathematical discipline concerned with

the solution of transport or kinetic equations. In our treatment of this

subject we develop a variety of mathematical tools that have been useful

for the solution of such equations. We are most concerned with the study

of general techniques that are suitable for a wide class of applications.

We first examine transport problems in which scattering or secondary

particle emission is ignored entirely, for example, particle streaming in a

vacuum or in a purely absorbing medium. Although this is a trivial

mathematical problem (essentially requiring only a modest smattering of

solid geometry), it does provide an essential foundation for more com-

plicated problems. For example, it yields an alternative form of the

transport equation (as an integral equation). The Green’s functions for

these simple streaming problems play a very important role in both the

theoretical and numerical analysis of more complex transport processes.

We next develop a simple model of transport processes in which scatter-

ing events occur. This model assumes that the particle kinetic energy

remains unchanged in the collision event. Hence the energy dependence in

the transport equation can be neglected (or averaged out) to arrive at the

“one-speed transport model” (referred to as the “grey atmosphere” model

in radiative transfer). This model is amenable to most of the classical

techniques used in the mathematical treatment of boundary value prob-

lems in partial differential equations—most notably, integral transforms

and separation of variables (eigenfunction) methods. However the

boundary conditions used in transport problems are unique, and thus

require the introduction of several more specialized methods (the Wiener-

Hopf method and singular eigenfunction expansions).

Chapter 3 develops in detail the basic collision models used in describing

various transport processes. We begin by considering linear transport

processes in which one can safely assume that the particles do not perturb

the host medium (e.g., neutron, electron, or photon transport) and derive

the general form of the appropriate transport equation (the Lorentz-Boltz-

mann equation). Then we treat the more general nonlinear collision models

such as the Boltzmann, Landau-Fokker-Planck, and Balescu-Lenard colli-

sion terms, which characterize collective processes such as gas and plasma

dynamics. We consider as well various approximate or modeled collision

terms used to simplify these studies.

One of the fundamental problems in transport (or kinetic) theory con-

cerns the derivation of “continuum” or macroscopic descriptions of the

transport process such as are exemplified by diffusion or hydrodynamics

equations. These are obtained by contracting the more detailed description

given by the transport equation to obtain approximate equations for the
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SCOPE or nuumsr-z g 39

moments of the distribution function. Chapter 4 reviews the traditional

schemes for accomplishing this (the Chapman-Enskog method and expan-

sions in orthogonal polynomials). Then we introduce a more sophisticated

method based on projection operator algebra.

Chapter 5 illustrates several of the applications of transport theory by

examining an assortment of problems that arise in various fields, always

with an eye toward stressing the underlying similarity of problems encoun-

tered in different applications. First we study the class of asymptotic

relaxation problems in which the particle distribution function is allowed

to relax to equilibrium in time or space. Since this problem is intimately

related to the eigenvalue spectrum of the appropriate transport operator, it

plays a very fundamental role in the theory of particle transport. We then

examine a variety of initial value and boundary value problems in trans-

port theory and conclude with a discussion of the rather specialized but

extremely important topic of superthermal particle transport in which very

energetic particles slow down by way of scattering events in the host

medium.

Chapter 6 addresses the important although extremely difficult problem

of nonlinear transport phenomena. This discussion is admittedly cursory,

since the mathematical theory of such processes is still in a very primitive

state. We develop the method of moments, which can be used to attack

such problems, and we illustrate these methods by applying them to the

7 analysis of highly nonequilibrium flows such as shock wave propagation.

We also discuss methods based on the integral transport equation, con-

cluding with a discussion of the quasilinear method used in plasma

physics.

Chapter 7 develops the principal approximation methods used in trans-

port theory. First we apply standard methods of perturbation theory to

estimate integral quantities (eigenvalues or weighted integrals of the solu-

tion to the transport equation). Then we discuss the ways in which the

calculus of variations can be used to approximate either the solution or the

form of the transport equation. Finally, we investigate several more spe-

cialized approximation methods that are used to simplify the energy (or

speed) variable in the transport equation.

Chapter 8 is concerned with numerical methods that have proved to be

useful for the solution of transport problems. Of particular interest here are

the powerful methods of discrete ordinates and finite elements that have

been applied with considerable success to radiation transport problems.

We also examine more specialized methods such as integral transport and

collision probability techniques.

Chapter 9 covers methods that can be used in the direct simulation of

particle transport processes. Of major interest are statistical methods

(Monte Carlo), which represent the most versatile and powerful (and
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40 [:1 ' TRANSPORT EQUATIONS

usually the most expensive) approach to studying transport processes. We

also consider deterministic methods for simulating particle transport, such

as the molecular dynamics method, which directly solves the equations of

motion for the many body system of interest.

[1 PROBLEMS III

1.1 Determine the units for the following quantities: n(r,v,t),q>(r,v,t),

<p(r, E, (I, t), j(r, E, 82, t), and I,(r, II, t).

1.2 Suppose that the angular density is given by n(r,§2)=(n0/4w) (1—

cos 0), where 0 is the angle between I! and the z-axis. If A is the area

perpendicular to the z-axis, find the rate at which particles pass through A:

(i) per unit solid angle at an angle of 45° with the z-axis, (ii) from the

negative 2- to the positive z-direction, (iii) net rate of flow through A, and

(iv) total rate at which particles pass through A.

1.3 Demonstrate that in an isotropic flux, the partial current density in

any direction is given by J + =¢/ 4.

1.4 Explain briefly whether the transport equation as we have derived it

adequately describes: (i) an extremely dilute gas of average density less

than 1 molecule cm'3, (ii) neutron transport through a single crystal, (iii)

light passing from the atmosphere into the ocean, (iv) the flow of auto-

mobiles down the Hollywood freeway at 5 P.M. on a Friday.

1.5 Derive the form of the transport equation that includes the effects of

external forces by using the particle balance approach.

1.6 Integrate the transport equation over velocity (or angle) to obtain an

equation for particle density (or flux). Then discuss qualitatively how one

might expect to obtain a diffusion equation for N(r, t) from this exact

relation. That is, discuss the approximations necessary and the conditions

under which these approximations might be expected to be valid.

1.7 Consider particle transport in a one-dimensional rod of length L.

Assume that the particles can move only to the left [say, as described by a

distribution function n_(x,0,t)] or to the right [n+(x,0,t)]. Furthermore,

consider only forward scattering and backward scattering processes de-

scribed by Z;*(0’,0) and 2§(0’,0).

i Derive the transport equations for n+ and n_.

ii Simplify these equations by introducing the one-speed approximation

[e.g., E,(0)= constant =2‘, + E: + 2,‘, 231(0’, 0)= Zf8(0' — 0)].

iii Describe the boundary and initial conditions necessary to complete

the specification of the problem.

iv Solve the one-speed transport equation for the rod assuming an

incident current of one particle per second on the left end and zero
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REFERENCES I] 41

reentrant current on the right end. Assume that this current begins

at time i=0, and prior to that time there are no particles in the rod.

1.8 Develop the particular form of the transport equation in (i) plane

geometry, (ii) geometries with spherical symmetry, and (iii) geometries with

cylindrical symmetry. For convenience, disregard the energy and time

dependence.

1.9 Expand the solution to the transport equation in one-dimensional

plane geometry in the first two Legendre polynomials:

<P(X,E,M)E%(X,E)(%)PO(10+ <v|(x,E)(%)P|( u)

where Po( p.)= 1 and P1( p)= it. Substitute this expansion into the transport

equation, multiply by P0( p.) and P,( )1), respectively, and integrate over it

to obtain a set of equations for the unknown expansion coefficients

<p0(x,E) and (p1(x,E). These are known as the Pl equations.

1.10 Derive the Liouville equation (1.13) for the ensemble density function

p(I‘N,t) by using Harnilton’s equations (1.12) along with the conservation

of the total number of systems in the ensemble. [Refer to any text on

statistical mechanics for assistance]

1.11 Demonstrate the equivalence of the two expressions given for the

ensemble average (A (t)> in Eq. 1.14.

1.12 Derive the Klimontovich equation (1.16) by directly computing the

time derivative of the microscopic phase space density function n(r,v, t)

defined in Eq. 1.15.
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[325

Exact Solutions for

Simple, Modeled Theories

of Particle Transport

The transport equation for the phase space density n(r,v, t) is an essentially

exact description of particle transport processes, provided one allows for a

sufficiently general interpretation of the interaction cross sections Z(r,v).

The solution of this equation contains all the information (actually consid-

erably more information) that we might require concerning a transport

process. All we have to do is solve this equation.

But therein lies the difficulty. For the transport equation contains seven

independent variables, r, v, and 1. Furthermore, the dependence of the

collision cross sections Z(r,v'—>v) on the particle velocity v (or kinetic

energy, E = mo2 / 2) is usually extremely complicated because of the colli-

sion dynamics of the colliding particles. These cross sections may also

contain a complicated dependence on position r if the medium is

sufficiently inhomogeneous. We have seen that in some cases they may

even depend on the density n(r,v, t) itself and lead to a nonlinear transport

equation.

These considerations immediately suggest that any attempt to solve the

transport equation for a realistic system must involve extensive use of the

digital computer. Unfortunately no computer is sufficiently large or fast

enough (yet) to solve this equation in the very general form in which we

have derived it. Therefore we must introduce approximations to simplify

this general description of transport processes, generally by attempting to

reduce the number of independent variables that are significant in a given

problem.

There are several different paths available to us. (i) We could approxi-

mate the form of the transport equation itself in an effort to allow its

application to the study of realistic (and therefore, almost by definition,

complicated) problems. (ii) We could consider only model problems for

which the appropriate form of the transport equation becomes sufficiently

simple to allow analytical, closed form solutions. (iii) We could attempt to

solve a restricted form of the transport equation directly by using numeri-

cal or statistical simulation techniques.

44E]
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EXACT SOLUTIONS [1 45

Into the first class would fall methods such as diffusion theory or

hydrodynamics (or their generalizations such as the P,V or Chapman-

Enskog expansions), which seek to approximate the structure of the

streaming operator 8/8t+v-V. Although these methods are extremely

important and serve as the cornerstone for most treatments of transport

phenomena in engineering applications (e.g., nuclear reactor design or

aeronautical engineering), they effectively mutilate the transport character

of the theory and as such are generally not classified as “transport

theories.”

An alternative approach is to apply the exact form of the transport

equation to “modeled” problems that are sufficiently simple to allow

detailed analysis. For example, one might consider transport only in very

simple geometries, or one might introduce approximations in the energy or

angle variables:

Common Approximations of Geometry

i Isotropic, homogeneous media.

ii Infinite or semi-infinite geometries (half-spaces).

iii One-dimensional symmetry (plane, spherical, or cylindrical).

iv Periodic symmetry (lattices).

v No symmetry (use a computer).

Common Approximations of Energy Dependence

i One-speed approximation in which all particles are characterized by a

single kinetic energy or speed.

ii Multigroup energy descriptions in which the particle energy range is

broken into intervals or groups, and each group is characterized by a

single energy.

iii Simple models of the cross section energy dependence (e.g., expan-

sion in polynomial functions of energy).

iv Simple models of the collision kernels (e.g., separable or degenerate

kernels).

Common Approximations of the Angular Dependence

i Isotropic sources.

ii Isotropic scattering (angle-independent collision kernels).

iii Expansion of the collision kernels in a finite set of Legendre poly-

nomials in angle.

We have attempted to classify the various “solvable” problems of transport

theory (such as there are) along with the appropriate method of solution

(analytical vs. numerical) in Table 2.1.
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Table 2.1 El The “Solvable” Problems of Transport Theory

Geometry‘

One-Dimensional Two-Dimensional Three-Dimensional

Problem oo—Medium Half-Space Finite x—y r~z General

Energy

One-speed A A A N N N

Multigroup A A,N N N N N

Continuous E A A,N N U U U

Angle

Isotropic A A A N N N

Anisotropic A A N N N N

Material

Vacuum A A A A A A

Pure absorption A A A A A A

Uniform media A A A N N N

Nonuniform media N N N N N N

Sources

Localized (point, plane, line) A A A N N N

Green's function A A A N N N

Pulsed or oscillating A A A N N U

None (inhomogeneous boundary

conditions or critical) — A N N N N

Time dependence

Static with source A A A N N N

Critical A A A N N N

Oscillating sources A A A U U U

Pulsed sources A A A U U U

General time dependence A A N U U U

"A = analytical solution available, N = numerical solution available, U = Ugh!
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PARTICLE STREAMING IN THE ABSENCE OF SCATTERING El 47

In fact, given a modeled problem that is simple enough, it is occasionally

(but not frequently) possible to obtain an exact analytical solution to the

appropriate form of the transport equation. We examine this small subset

of modeled problems in this chapter, not so much because they provide an

adequate description of real, physical phenomena, but rather because they

reveal a good deal about the structure of the transport equation and the

nature of its solutions for more complicated problems. Moreover they

occasionally provide sufficient insight into the character of more com-

plicated problems to allow their efficient numerical solution or provide

exact (or “bench-mark”) solutions against which numerical approximation

schemes can be tested.

2.1 [1 PARTICLE STREAMING IN THE ABSENCE OF SCATTER-

ING El We begin our study of the solvable class of problems by consider-

ing transport in media in which interaction events (if they occur) produce

no secondary particles, that is, media for which c=0. In such media all

transport or kinetic equations take the form

an an F (in

E+v-g+;-—g+02an(r,v,t)=s(r,v,t) (2.1)

Since the only interaction process allowed is absorption, we have replaced

the total cross section 2 by the absorption cross section Ea.

Although the neglect of scattering events might appear at first to lead to

a rather idealized and uninteresting problem, it turns out to be of very

considerable use in studying a variety of physical processes. It is actually

of far more use than most of the other models presented in this chapter.

For example, such a model would characterize particle streaming in a

vacuum; neutrons streaming in gas channels in nuclear reactors or intense

radiation produced by sources surrounded by air would be described by

this theory. Highly absorbing media such as nuclear reactor fuel elements

or optically thick plasmas can also be described by such a model.

In addition, the solution of Eq. 2.1 plays an important role in problems

in which scattering processes are allowed. This is because the particle

density characterizing a purely absorbing medium can be interpreted as

the uncollided or “first-flight” density in more general transport problems.

We will find that these solutions can be used as Green’s functions (“first-

flight kernels”) to transform the integrodifferential form of the transport

equation into an integral equation representation. Moreover, such solu-

tions can be used to calculate the “escape probabilities” or “collision

probabilities” characterizing particles streaming through lumped absorbers

(which are of significance in the theory of resonance neutron capture in
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48 E] EXACT‘ SOLUTIONS

fission chain reactors or line emission and absorption in radiative transfer

processes).

2.1.1 [1 General Solution [I] We can integrate the particular form of the

transport equation appropriate for streaming, Eq. 2.1, by first rewriting it

in a more concise (and abstract) notation as

an

E + [in — s (2.2)

where we define the “streaming” operator

_ 3 F 3

Q=V5+5 av

+ 02,,

If we pretend for the moment that E is simply a constant, not an operator,

we can easily integrate Eq. 2.2 with respect to time from some initial

instant, say t=0, to find

n(r, v, t) = e _'Bn(r, v, 0) + ftd're _('_’)Bs(r, v,r) (2.3)

0

But of course (3 is not a constant but rather an operator; thus we must be

a bit more careful in our definition of exp(— tli). We can define this

quantity by using a series expansion of the exponential

exp(—tB)El—-t[i+%t2€2—~- (2.4)

disregarding for the moment questions of convergence and other annoying

mathematical subtleties. It is apparent that exp(—tf‘l) is the “time evolu-

tion operator” or “time propagator” that propagates a function from its

value at the initial time t=0 to its value at a later time t as governed by

Eq. 2.2.

To make this solution less abstract, suppose for the moment that we

consider transport in a vacuum for which 2,, EF 50. Then 13 =v-V, and

the application of Eq. 2.4 to a function fcn(r) yields a Taylor expansion

such that

exp( -— tv-V) fcn(r) = fcn(r—vt)

Therefore we can write our general solution given by Eq. 2.3 as

n(r, v, t) = n(r— vt,v,0) + Lida-Kr — v(t — r), v,r) (2.5)

Obviously this solution merely tells us that in a vacuum the distribution
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PARTICLE STREAMING IN THE ABSENCE OF SCATTERING U 49

function n(r, v, t) at time t is found by looking back along the direction

—v/|v| a distance at to see what particles are going to stream along this

trajectory to the position r in direction +v/ |v|.

The case of transport in a purely absorbing, spatially uniform medium

(in which we continue to ignore external forces) is almost as trivial:

n(r, v, t) = e_°z"‘n(r— vt,v,0) + f‘d're _"2"('_ T)s(r— v(t — r),v,'r) (2.6)

0

This result has an interpretation similar to that of Eq. 2.5 except that it

takes into account the time decay in the density due to particle absorption.

We can relax the assumption of spatial uniformity [i.e., allow E=E(r)]

and the neglect of external forces with only a modest increase in complex-

ity (but no significant gain in understanding).l We could use these results

to examine stationary problems as well, simply by demanding that the

source terms be time independent and extending the limit on the time

integration to t->oo. However it is useful to rederive the form of the

distribution characterizing particle streaming for time-independent prob-

lems in a somewhat different fashion.

For the moment we ignore the external force term and introduce the

particle flux q>= on as the dependent variable to rewrite Eq. 2.1 as

1 Hip A A -

35+9-V<p+Ea<p(r,SZ,t)=s(r,fl,t)

Here we have suppressed u = M as an independent variable, since there are

no physical processes (i.e., no operators in the equation) that will act to

change the particle speed or energy. If a particle suffers a collision, then by

definition (c=0) it disappears. Thus 0 appears only as a parameter, not as

an independent variable. This will no longer be true if external forces are

present, of course.

2.1.2 El Stationary Transport in a Vacuum El If we just set i=0 and

8/8t=0 in the form of the transport equation given by Eq. 2.7, we arrive at

an equation describing particle streaming in a vacuum:

82 'V(p(l', Q) = s(r, (2.8)

To solve this equation, we simply note that fit-V is just the directional

derivative along the particle flight direction It. Hence if we define the

variable R along the particle trajectory as shown in Figure 2.1, we can

rewrite Eq. 2.8 as

—gicpfi—RQ,Q)=Q'V<p(r—-RQ,§Z)=s(r—RQ,Q)

But we can easily integrate this equation over all R to arrive at an
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50 El EXACT SOLUTIONS

Fig. 2.1 1:1 Particle streaming from a distributed source in a vacuum.

expression that describes the angular flux <p(r,§2) resulting from a distrib-

uted source s(r,SZ) in a vacuum:

(p(r,§Z)=f0°°dRs(r— RSALQ) (2.9)

Of course this solution is intuitively obvious, since it merely expresses the

fact that the neutron flux at a position r can be obtained by adding up all

the source neutrons produced in that direction that can pass through point

r.

To illustrate this result, suppose we consider a cavity2 with a surface

source ss(r,fl) distributed on its walls (see Figure 2.2). We must be careful

here, since we have to modify our volume source term to account for a

distributed surface source. If x is the coordinate normal to the surface, we

can write

s(r,o)=s,(r,o)s(x)

Then we can substitute this into our general result Eq. 2.9 to find

<p(r,§2)= f0°°dRs,(r— Rn,o)s(x)= Loodxiai ss(r— Rfl,§l)8(x)

_ s,(r— RSSALSAZ)

I 'é.|
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PARTICLE STREAMING IN THE ABSENCE OF SCATTERING D 51

A

0

/+/’ / Fig. 2.2 [I The angular flux re-

sulting from a distributed surface

8, source in a cavity.

This result could have been written down almost by inspection—with the

possible exception of the factor |I2-é,| introduced by the surface source

distribution.

As a variation on this theme, we can calculate the particle fluxAthat

results from a given flux distribution on the surface, q>(r,,fl)= <ps(rs,fl) as

Mtg) = n(r— R53, sA1)

In particular, it should be noted that if the surface flux is isotropic and

independent of the position on the surface, the flux at any point in the

cavity will similarly be isotropic and position independent.

2.1.3 [1 Stationary Transport in Purely Absorbing Media C] We can

easily modify the foregoing solution to include the effect of absorption. To

this end, consider the appropriate generalization of Eq. 2.8:

A

o-v<p+2,,<p(r,o)=s(r,o) (2.10)

If we assume that 20(r) is independent of r, we can use an integrating

factor exp(E,,r-SZ) to write the solution to Eq. 2.10 as follows:

<p(r,§2)=j(;°°dRs(r—RO,Q)e‘2"R (2.11)

Since we can identify exp(—Z,,R) as simply an attenuation factor due to

particle absorption, it is apparent that this result is a natural generalization

of our vacuum result Eq. 2.9.
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52 [:l EXACT SOLUTIONS

We can extend this result even further to account for nonuniform media

in which 2,, =2a(r) by generalizing the integrating factor

exp(—2aR) -—->exp[ — a(r,r— Rm]

where

any); 1;) "_"'a;2,(r- S('_'J)) (2.12)

Ir—r'l

is known as the optical thickness2'3 of the medium and characterizes the

effective absorption between two points r and r’. Then the general solution

of Eq. 2.10 can be written as follows:

rp(r,fl)=£°°dRs(r—R§l,§l)exp[—a(r,r—R§l)] (2.13)

2.1.4 El First-F light Kernels D Notice that if we replace 2,, by the total

cross section 2,, our solutions for purely absorbing media will describe the

distribution of uncollided or “first-flight” particles emitted by a source. As

we see later, the solution describing the distribution of first-flight particles

for a point source can be very useful because it will serve as the Green’s

function for an arbitrary source distribution. That is, it will appear as the

“kernel” in an integral equation yielding the particle density due to an

arbitrary source.

However before we develop this point source kernel, it is useful to

modify our general solution Eq. 2.11 by converting the line integral that

appears in this result into a volume integral. For this purpose, we introduce

an angular Dirac (‘S-function 82(Il-IZ'),"2 defined by

(you?! -§l’)f(§l’) =f(fz)

Notice that this ‘quantity can be,‘ expressed in terms of the usual Dirac

8-function as 82(fl'Q')=(2'rr)_'8(IZ'SZ’— 1). If we insert this function into

Eq. 2.11, we can write

<p(r,fz)= f4 dfzR s,(s‘z-fz,,)fo°°dRs(r- Rhine-2"‘ (2.14)

where we have defined a dummy integration variable QRERARL If we

recall that the volume element in R-space is just d3R = RZdRdIZR, we can

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



PARTICLE STREAMING IN THE ABSENCE OF SCATTERING [I] 53

rewrite Eq. 2.14 as a volume integral:

<p(r,o)= fd3Rs(r—R,R/|R|)82(Q-R/|R|)e_2'RR -2 (2.15)

Here we should note that although the integration is over all space, the

82-function admits only those vectors R along Q.

As an application of this result, let us calculate the angular flux resulting

from a point source at position ro emitting a beam of particles in a

direction 90 (see Figure 2.3):

3(7, = $0826“2 ‘9980' _ I'0)

If we substitute this source into our general result Eq. 2.15, we find

|I._r0| e_2'|r—IOIESOGpt(r, Q; I'm 5A20)

¢<rf2>= lira-ms. “"0 it

1'' _ l'olz

(2.16)

as the uncollided angular flux at position r in direction (2 due to a point

source at r0 radiating in direction (20. We identify this result as the

first-flightAkemel or Green’s function for a point source and denote it

by Gp,(r,fl;ro,flo). Then, consistent with the usual interpretation of a

Green’s function, we would calculate the uncollided angular flux from an

arbitrary source distribution s(r, II) as follows:

rp(r,§l)= fdsrof d§10Gp,(r,§Z;r0, Qo)s(ro,flo) (2.17)

Fig. 2.3 [:1 The angular flux from a beam source at r0 radiating in direction 90.
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54 [:1 EXACT SOLUTIONS

As a special case, we can calculate the uncollided flux resulting from an

isotropic point source located at the origin

A A A A S r A e_ r

q’ptfi'a = fdsrof dllo Gp‘(l', 9; To, 820) i 8(l‘o) = 3082( _ ufl) __

|l'| 4'rrr2

As a check, we can integrate this to find the flux from a point source

A — 2,r

¢,..(r)= dn<p,.<r.m=s. ‘’

4

'77!‘2

which agrees with our physical intuition, which expects an exponential

attenuation exp(—E,r) due to collisions and a (41rr2)_' falloff in the flux

due to the geometric spreading of the source particles as they fly away

from the source.

We can use the point source kernel to calculate the first-flight kernels

characterizing other geometries. Consider, for example, the plane source

kernel characterizing plane geometries. If we build up the contribution

from a plane source by integrating over a distribution of isotropic point

sources (see Figure 2.4), we find

¢..(x>= (Emma

r

Fig. 2.4 [I Detemtination of the flux from an isotropic plane source.
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PARTICLE STREAMING IN THE ABSENCE OF SCATTERING [1 55

Now let R 2 = r2 + x2, 2RdR =2rdr to write

00 s 00 _ s

¢..<x)=fx ¢...<R>2wRdR=;°fx e “T=3°E.(2.x)

where we have introduced the exponential integral function

00 |

E,I x E due_"‘u_"= d "_2e"‘/"

( ) fl [0 m1

In a very similar fashion we can use the point source kernel to build up

first-flight kernels for other geometries of interest (see Figure 2.5)"2

Spherical Shell Source Kernel:

¢...(r>= giEdzlr—aD—EAZIHQD]

Cylindrical Shell Source Kernel:

2 r+ a '

soa d)‘ Kt|(E)\)

4>¢|(’)= T Ir_a| [(r+a)2_>\2]l/2[A2_(r_a)2]l/2 ’

mm); fzragxoo)

€§

‘ r

(a) (b) (t)

Fig. 2.5 1:] Common source distributions. (a) Shell source. (b) Cylindrical source.

(c) Line source.
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56 [I EXACT SOLUTIONS

Line Source Kernel:

¢.(r)=,s—;;,Ki.<2r)

It is important to note from Eq. 2.16 that the point source kernel exhibits a

rather interesting symmetry property:

Gp1(|',n§|'o>flo)= Gp1(|'o’ _no; I’ _n)

That is, the flux at r in direction Q from a source at ro radiating in

direction 90 is identical to that resulting from a switch of source and

observer positions and directions. This “restricted” reciprocity relation

plays an important role in the calculation of the escape and collision

probabilities, defined in Section 2.2.6. It can also be generalized to apply to

particle transport processes that include scattering events.l

2.1.5 [I] Integral Forms of the Transport Equation [I As yet another

application of the point source kernel, suppose we return to the more

general form of the transport equation characterizing a stationary trans-

port process

A

o-v<p+z,<p= fooodE’fdfi’ZS(E’—>E,O’->§Z)q>(r,E’,Q’)+s

Es’(r, E, Q) 0-“)

Here we have defined the right-hand side of this equation as an effective

source term s’(r, E, Q). If we pretend for the moment that this source is

known [although it depends on the unknown angular flux q>(r, E, Q), of

course], we can solve Eq. 2.18 using our general result Eq. 2.17 to find

exp1 —2,(E>|r—v|1

|-—-“|2

8262-5238, (‘M’)

<p(r,E,SA2)=fd3r’j-dIAZ'[ |l_,_r|

><{ fds‘z"fo°°dzs"2,(E"_.E,o"_>§z')¢(r',E",o")+S(r',E,s2')}

(2.19)

Thus we have arrived at an alternative form of the transport equation—an

integral equation form, although the kernel is rather singular to be sure.

This equation simplifies very considerably if we can assume that both the
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PARTICLE STREAMING IN THE ABSENCE OF SCATTERING U 57

source and the scattering process are isotropic:

s(r,E,§Z)=(4'rr)_'S(r,E), 2,(E’—>E,Q’—>Q)=(4rr)_'2s(E’->E)

Then we can integrate Eq. 2.19 over angle to find an integral equation for

the angle-integrated flux

eXp[—E,(E)lr—I’|]

41r|r—r'|2

¢(r,E)= [113/

x U)°°dE'E,(E'_>E)¢(r',E')+ s(|/,E) (2.20)

This form of the transport equation is known as the Peierls equation,‘ and

it plays an extremely important role in the study of transport processes. It

can be specialized to other geometries by using the appropriate form of the

first-flight kernel for that geometry:

Plane Symmetry:

w 00

¢(x,E)=f dx'§E,(2,|x-x'|)[f dE’Es(E’—>E)¢(x’,E’)+S(x',E)]

—ee 0

(2.21)

Spherical Symmetry:

w I r’ I I

¢<r.E)=fo dr ;[E.(2.|r-r|>—E.(2.|r+r|>1

>< [ LwdE’Zs(E’—>E)¢(r’,E’)+S(r',E)] (2.22)

Here we note in passing how similar the integral forms of the transport

equation are for plane and spherical geometries. We comment further on

this similarity in Section 2.2.

We can develop somewhat different forms of the integral transport

equation (2.20) by introducing alternative dependent variables. For exam-

ple, if we define the particle collision rate density

F (BE ) =10, E )¢(',E )

we can find an integral equation for F(r, E) by simply multiplying Eq. 2.20
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by E,(r,E):

expr —2.(E)|r-r|]

411|l'—-l"|2

0° ,E,(E’—>E) I

[0 dE WF(1’,E)+S(1",E) (2.23)

F(r,E)= f (13/ 2,(E)

X

A second variation is obtained by defining the particle emission rate

density

x(r,E)= KdE'2,(E'_>E)¢(r,E')+ S(r,E) (2.24)

—that is, the rate density of particles leaving a source or emerging from a

collision with coordinates (r,E). Then obviously Eq. 2.20 can be written as

6x101 -2.<E)|r—r|]

= 3 I

‘#(I’E) Id ' 4'rr|r—-r’|2

x(I“,E)

But if we substitute this into Eq. 2.24, we arrive at an integral equation for

x(r,E)

= °° I g ..<=Xp[—E.(E')|r—r1] ,

x(r,E) f0 dE 2.(E E>fdr MIMI, x(r’,E)+S(r,E)

(2.25)

It should be apparent that equations analogous to Eq. 2.19 can be

derived in a similar fashion for the comparable angle-dependent quantities

f (r, SLE ) and X(r,fl,E). We can easily generalize these derivations as well

to include time dependencezlf we utilize‘ the coordinate system defined in

Figure 2.6 to write r’Er— R9 and t’Et — R/o, we can note

_L * I_*. 122

dRq>("/,Ean,t)_n v at

to write the transport equation (1.4) as

d<P I I w I A I I I A I A I / k I I

- % +E,(r)<p(r’, 1)=f0 dE fdfl 241,15 —>E,fl —>S2)<p(r,E ,o ,1)

+s(r’,E,Q,t')

But if we introduce the integrating factor exp[— f§dR'E,(r—R'§Z,E)], we
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21* =1

b>

9'

Fig. 2.6 [1 Coordinate system for integrating the transport equation.

can integrate this equation directly to find the integral form of the

transport equation for the angular flux as

<p(r,E,§l,t)=f°°dRexp[ -a(r,R,o,E)]

0

m A A A A

x { f dE'fdIZ’2,(r',E'—>E,fl’-+Q)<p(r’,E',fl’,t’)

o

+s(r,r,r‘z,r)]

where we have identified the energy-dependent optical thickness

a(r,R,fz,E)EfRdR'2,(r-R'fms)

0

When working with the integral form of the time-dependent transport

equation, it is generally more convenient to leave the equation in a line

integration form rather than converting to volume integration.

2.1.6 [3 Escape Probabilities and Collision Probabilities D The concepts

of escape and collision probabilities are frequently introduced to describe

the transport of particles in highly absorbing mediaz’s'6 To be more
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EXACT SOLUTIONS

Fig. 2.7 1:1 Particle escape from

region A.

specific, consider a system characterized by two regions as shown in Figure

2.7. Then we can define the escape probability for a region, say region A, as

P, = probability that a particle born uniformly

and isotropically in region A will escape

into region B before being absorbed

Of course, in the process of escaping from region A, the particle will

generally suffer a number of scattering collisions. If the region is highly

absorbing, then PA can be calculated in terms of a much simpler quantity,

the first-flight escape probability, PAO

PA0= probability that a particle originating uni-

formly and isotropically in region A will

make its next collision in region B (i.e.,

will escape region A without making a

collision)

The calculation of P40 is simply a geometrical problem, since one need

only determine the probability that a particle will stream out of region A

before it collides with anything. A closely related quantity is the collision

probability characterizing a region:

PAC= probability that a particle originating uni-

formly and isotropically in region A will

make its first collision in region A

From this definition, it is apparent that PAC =1— PAO.
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d5

Fig. 2.8 1:] Coordinates for escape probability calculation.

There are a variety of geometrical schemes available for calculating the

first-flight escape probability. We will consider the chord method first

introduced by Dirac.2'7 To this end, consider a uniform source distribution

S0 emitting particles isotropically in a body of volume V (see Figure 2.8).

Then we can calculate the number of particles produced in a volume

element d 3r that pass through a surface element dS at point r’ as

number from d 3r passing through dS = So(4'rr)_ 1d 3r d (2 exp[ — E,|r’ — rl]

Using this, we can calculate the rate at which particles escape from the

volume by integrating both over the source distribution and the surface

area

. _ SO 3 A /_

rate of partlcle escape from volume- 5 IVd r L 7rd (2 exp[ E,|r rI]

Therefore the first-flight escape probability is just

: escape rate = l 3 A _ ,_

P0 —VSO TV [yd r f dflexp[ 2,|r 1|] (2.26)

Now to perform these integrations, it is convenient to introduce a variable

A

transformation as shown in Figure 2.9 such that d3 =SZ-ésdSdR. Then we
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es

Fig. 2.9 1:] Calculation of the chord distribution function.

can rewrite Eq. 2.26 as

P0= MlT—VfdSLR’dRfdQe_2'Rf2-és= 4—717V-fdSfd§2(1—e_X'R')(Q-é,)

(2.27)

If we now introduce the concept of the chord length distribution function

@(R) characterizing the body:

<I>(R)dR =probability that a chord will have a length R in dR

4'ITV A e A

= — dS d0 SZ-e,

<R> W l ( )

we‘can rewrite Eq. 2.27 (see Ref. 2 for details) as

P0 ""“dR(l —e_2'R)<1>(R) (2.28)

l R

_ Z.<R> where the average chord length of a body (R) can be shown to be

4 V

<R>-fdRR<I>(R)- F

Thus our task is to calculate the chord length distribution function (I>(R)

for the geometry of interest and then perform the integral in Eq. 2.28.
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Fig. 2.10 I] Calculation of the first-flight

d3 escape probability for a sphere.

Example. Consider the calculation of the first-flight escape probability for

a sphere (see Figure 2.10). Then

@(R)dR=(wS)_|S2wp.dp.=2p.dp.

where p=cos0= R/2a and dp.=dR/2a. Thus

R .

(I) R dR= —— dR

( ) (202)

We can also find <R>=4V/S=(4/3)a. Therefore

.._3_ 2“ _R_ _ —E,R

Po- Adj) dR2a2(l e )

= 3

3(2/03

[2(Z,a)2—1+(1+22,a)e_22"'1

The first-flight escape probabilities Po have been calculated and tabu-

lated for most of the common geometries.2 Table 2.2 lists several of the

more important cases. We should note two particularly useful results that

apply to any geometry. Using Eq. 2.28 we can show that in the limit of

small volumes,

P ——--—> I

small volumes

(since the probability of leaking out before suffering a collision must then
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64 U EXACI‘ SOLUTIONS

Table 2.2 Ci First-Flight Escape Probabilities P0 in Common Geometries

Slab of width 0

P0 = (2211)‘ l[l — 2E3(2a)]

Sphere of radius a

P0 = %(Ea) _ 3[2(Za)2 — l + (l + 22a)e _ 22“1

Infinite cylinder of radius a

P0=(%){2[2a1(,(2a)11(2a)+ K0(2a)10(2a) - 1]

+ (zin- ‘K,(2a)1,(2a) - K0(2a)1|(2a)+ K,(2a)10(>:a)} \

approach unity). For volumes with dimension large compared to a mean

free path,

P _-_> -—

0 large volumes 4V2,

We return to consider such escape probabilities in Section 8.4.

2.2 III ONE-SPEED TRANSPORT THEORY [1

2.2.1 [1 The One-Speed Approximation I] In this section we develop

and study a model of particle transport in which we assume that all

particles can be characterized by a single speed 0 or kinetic energy

E = émvz. To introduce this approximation, it is natural to begin with thp

particle transport equation for q>(r, E, Q, t) so that the energy E and angle 0

variables are explicitly separated

l 82 +§Z-V<P+Z,‘P= fwdE’ldQ'E.(E’+E,Q'-+Q)<p(r.Ezr>+s

0 8t 0

(2.29) '

To remove the energy dependence in this equation, we simply integrate Eq.
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ONE-SPEED TRANSPORT THEORY [j 65

2.29 over energy and define the energy-averaged parameters

°° —1

f0 dE(v) M)

w)— E f :dEaE)

0

fdwmw)

dE<P(E)

0

2

f 00211; f wdE’2,(E’—>E, 52'_>s‘2)<p(12', f2’)

0 0

f0°°dE'¢(E',f2')

Ego->9)

oo

55 f dEs(E) (2.30)

0

and the energy-integrated angular flux

A w A

wring] dE<p(r,E,SZ,t)

0

Then the energy-integrated transport equation can be written as

% +o-v<p+i,<p(r,o,1)= fdo'i,(o'_>s‘z)¢(r,§r,t)+mot)

ml—

(2.31)

This energy-averaged equation is known as the one-speed or one (energy)

group transport equation. Of course it has only a formal significance, since

the energy averaged parameters such as E, that appear in the equation

depend on the unknown energy-dependent angular flux q>(r, E, Q, t). How-

ever in studying this model we assume that it is possible to guess or

approximately calculate these parameters so that they can be regarded as

known. For example, if all the particles were to possess only a single

energy E, and if ES(E’—>E)~8(E' — E), then of course the averages in Eq.

2.30 merely would reduce to the value of the cross sections evaluated at the

energy E. In the more general case, we might consider using some suitable

approximation of q>(r, E, Q, t) to calculate these quantities,8 for example, a
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66 E] EXACT SOLUTIONS

Maxwell-Boltzmann distribution <p(E)~0M(E). In any event, we assume

henceforth that the energy-averaged cross sections (the so-called one-group

constants) can be determined and therefore are specified in advance in our

study of the one-speed transport equation.

There are actually several problems in transport theory that can be

described by such a crude treatment of the particle energy dependence.

For example, in nuclear reactor applications, the description of either very

fast9 or very thermal10 neutron assemblies can be characterized by such a

model. Furthermore, nuclear systems analysis requires a number of neu-

tron transport calculations in which energy effects are of secondary impor-

tance (e.g., calculation of the escape probability of fast neutrons in a fuel

pin or determination of the flux depression that occurs near a control rod

in a nuclear reactor).

The one-speed transport equation also arises in the study of radiative

transfer. The general form of the radiative transfer equation for the radi-

ant intensity I,(r,fl,t) in which scattering is included can be written as

a] g A A A A A

l —' + o m, + 2,,1,(r, o, t) = z,,fdo'f,(o'_.o)1,(r, o’, t) + s,,(r, o, t)

c at

(2.32)

where we have defined the photon interaction cross sections characterizing

absorption and scattering, 2WEpn, and 2" 57,2“. In certain applications

(the so-called grey atmospherell model) one can effectively ignore the

frequency dependence of these cross sections. Then if Eq. 2.32 is integrated

over frequency, an equation identical to the one-speed transport model Eq.

2.31 results:

%% +Q-VI+2,I(r,Q,t)=2SfdQ’f(Q'->Q)I(r,t)+s(r,Q,t)

One-speed models also arise in some studies of electron transport, since

the elastic collision of electrons with nuclei or atoms is essentially a

one-speed process (although, as we noted in Section 1.3, this description

must be coupled with a continuous slowing down treatment of the frequent

inelastic collision events that cause the electrons to rapidly lose energy as

they travel through matter).‘2

On a more fundamental level, one of the most important problems in

theoretical physics is the Lorentz gas or fixed scattering center model in

which one studies the diffusion of particles through a random array of

fixed scattering centers.l3 Obviously, since the scattering centers are not

allowed to recoil, there is no energy exchange in a collision event, and a
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ONE-SPEED TRANSPORT THEORY U 67

one-speed description is appropriate. Of course this problem is essentially

just a form of the random walk problem familiar from statistical physics.'4

It is not surprising that the one-speed transport equation has been

exhaustively studied in transport theory as an idealized model of various

physical phenomena. But there is one additional application of this model

that takes on a far more practical (and useful) flavor. In any accurate

description of particle transport, it is necessary to consider the particle

energy dependence in more detail, and this usually requires a numerical

approach. The most popular scheme8J5 for treating the particle energy

dependence involves a generalization of the one-speed or one-group model

in which the energy range is broken into a number of intervals or energy

groups:

L l L 1 | l ;

EG EG_, Ex Er, E, 150 E

and then the transport equation is integrated over a given group, Eg <E <

E8_ 1. The “backward” group indexing is chosen to correspond to the fact

that in most transport processes the particles lose energy in collisions,

progressively scattering to lower energies. If we now define the angular

flux characterizing a given energy group as

rp8(r,§2,t)§[:"'dEip(r,E,Q,t)EfdEq>(E)

s 8

and the corresponding energy-averaged cross sections or group constants

characterizing that group as

v,-'E¢;'dEv-'¢(E>. 2.,E¢;'L¢1EE.(E)¢(E)

2.,.,E¢;'£dELdE'2,(E'->E)¢(E'), s85 £41545)

then it is apparent that we can integrate the transport equation over a

given energy group g to find

a ‘ 6

vi % + Q .Wpg + Elxpg = 2 fdQ' ESUGT—AADQJSIO', Q’, t) + sg(r, Q, t),

8

g’=l

g=l,...,G (2.33)

These equations are known as the multigroup transport equations, and such
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63 E] EXACT SOLUTIONS

a multigroup approach is the most common method for obtaining accurate

solutions to realistic (complex) transport problems in which energy-depen-

dent effects must be included.

But how is this related to our one-speed model? Suppose that we

rearrange all the terms in the multigroup transport equation (2.33) that

involve groups g’ #g over to the right-hand side of the equation

I A A, A’ — I

v_g T; +fl-Vq>g+Ellq>g—fdfl Esnipg= gégfdn Zsg.l(pg'+sg=sg

(2.34)

Now note that if we knew the group fluxes (psi, the terms involving these

fluxes would appear as source terms in an effective one-group transport

equation characterizing group g. But this is exactly how the multigroup

equations are solved in practice! In the vast majority of transport prob-

lems, one can effectively assume that the particles will only lose energy in a

collision, since their energy is usually considerably in excess of the thermal

energy of the atoms comprising the host medium. Hence we can start at

the highest energy group g=1 and solve a successive series of one-group

problems for the group fluxes. At each stage of this process, the only group

fluxes (pg, that appear involve higher energy groups and therefore are

known from earlier stages of the calculation. Even if “upscattering” in

energy occurs, and the (pg. then involve both higher and lower energy

groups, it is still most efficient to solve the multigroup equations in an

iterative fashion by assuming that the (pg, are known, solve the effective

one-group equations (2.34) down the group structure, and repeat the

calculation using the computed values of (pg.

Hence it should be evident that the one-speed or one-group transport

equation is not only significant for simple modeled theories of particle

transport, but it also plays a pivotal role in more accurate numerical

solutions of transport problems using multigroup methods. It is therefore

apparent why this simple form of the transport equation warrants a very

thorough study in any development of the subject of transport theory.

We introduce several additional simplifications into the one-speed model

we intend to study in this section. First we consider only stationary

transport processes (deferring the study of time-dependent phenomena to

Section 2.3). Next we restrict ourselves to transport processes occurring in

homogeneous, isotropic media for which the interaction parameters become

independent of position and direction, [i.e., 2(r,f2)=2,c(r)=c]. Then the

corresponding form of the one-speed transport equation becomes

TI ~Vq> + E,ip(r, = cZ,fd§2’f(Q’—>Q)<p(r, Q’, t) + s(r, Q, t)

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



ONE—SPEED TRANSPORT THEORY I] 69

where we recall that f (SAY—JAE) is defined to be the probability distribution

characterizing particle scattering from directions 9’ to Q.

It occasionally proves convenient to restrict our study to isotropic

scattering processes and source distributions for which f(Q’—>fl)=(4rr)_'

and s(r,§Z)=S(r)/4n. Under these assumptions, the one-speed transport

equation simplifies still further to

A A (‘2, A , A, S I‘

Q'Vtp+E,<p(r,fl)= Z'Tfdfl <p(r,9 )+ —“(fl—) (2.35)

It is useful to note the corresponding form of the integral transport

equation in the one-speed approximation

exP(—E.lr—l“l)

r = d3r' c2 r’ +8 I" 2.36

¢<> f MIMI, [ ,¢() ()1 < )

Table 2.3 presents the specific forms taken by these equations in the more

common geometries (plane, spherical, and cylindrical).

2.2.2 I] A Fonnal Solution of the One-Speed Transport Equation 1] We

begin our study of the one-speed transport equation by solving it in a very

formal fashion for the case of isotropic scattering and sources. For this

purpose we consider the integral form of the transport equation or Peierls

equation as given by Eq. 2.36. This equation is classified mathematically as

an inhomogeneous Fredholm equation of the second kind with a displace-

ment kernel.I6 The theory of such equations is rather well developed (see,

e.g., Courant and Hilbertl7 or Morse and Feshbach's). In fact from a

historical viewpoint, much more was known about the mathematical

properties of this form of the transport equation than the original integro-

differential equation derived by Boltzmann, and therefore most of the

early “classical” work in transport theory was based on Eq. 2.36. Only

comparatively recently has the theory of the integrodifferential form of the

transport equation reached a comparable stage of development.

Let us begin by defining an integral operator K

exp[ —Z,[r—r’|]

K0 5 d3r'——— (‘2 0 f 4'rr|r—r’|2 ' ( )

Then we can rewrite our inhomogeneous integral equation (2.36) in opera-

tor form as
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Table 2.3 E] The One-Speed Transport Equation for Various Geometries

General form

CE, 8([)

_zllr_l’i

. = ' I _ = 3/e—_

9 Vq2+2,<p 4w fdfl <p(r,Q)+ 4w ¢(r) [d r 4W4‘:

[01¢(r') + 5('’)l

Plane symmetry

8 I I S w I / I

i—‘P +2.¢= —' “a ¢<x.»>+ L) ¢<x>= f dx %E1(>3,|x—x |)1c>:.¢(x)+s(x )1

6x 2 _, 2 _,,,

Spherical symmetry

2) 1 a l “H r I

{g Enwfiaa-m ¢<r>= 7; [O r dr1E.(E.|r—r |>—E.<E.|r+/|)1

CE 1 , , S

=71 _*l a. <p(r,p)+ g) [czar/warn

Cylindrical symmetry

Hi _1 a _2 ,0’ I r” Kil(Z,A)

, 83"") ram’) ‘Wl‘ifo 'd'fwdxi '2 2 2 '2

' '1 [(r+r) —l\ ][>\ ‘(r-")1

E

=f4—Jfd“¢("9'>+% {c2.¢<r'>+s(r'>1

U 01.
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ONHPEED TRANSPORT THEORY * 1:] 71

where I is the identity operator. The formal solution to this equation can

then be written as

¢=(I-K)_'K(c—;) (2.38)

If K were just a scalar, we could expand the inverse (I — K )_I as

(I—K)_'=1+K+K2+--- = 2 K", |K|<l (2.39)

n=0

Let us suppose for the moment that we can write a similar expansion for

the operator inverse (I — K )_I in Eq. 2.38 to find

°° S

t- 2." (is) (24")

Such an expansion is known as a Neumann seriesl6 solution of the integral

equation, and it is useful for solving (formally) a wide class of problems,

provided the series converges. This form of solution can also be generated

using an iterative method (a Neumann iteration) defined by

S S

(n+1): (n) _ <0): __

t "1’ “(61), 1’ ‘(62.)

But when is such an expansion valid? From analogy with the power series

expansion (Eq. 2.39) we might expect

on

(I—K)_'= 2 K" for "K" <1

n =0

where “K H is some appropriate operator norm defined by

"K" =Inax{ m : f Eclass of admissible functions]

Hill

where the function norm might be, for example, the Hilbert norm

||r|| = [ [dxrmnnlm

But when might we expect ||K||<1? If we examine the first few terms in
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72 El EXACT SOLUTIONS

the expansion Eq. 2.40, we can assign a physical interpretation to each

term as representing a sequence of collision events:

exp( - Elk—Ill)

4'iT|l'—r’|2

¢(r)= fdsr’

virgin source

particles

arriving at r

./'r

Slr'

so“)

)

ex —2 r—r’ ex —2 r’—r”

+ djrl ll 2 cztfdjrn 1| 2 S(rll)+ _ . '

4w|r—r’| 4ir|r—r’|

second generation source

particles that have scattered

once at r’ before arriving at r

./:l'fi'\>r

s11") (2.41)

Hence the Neumann expansion is nothing more than an expansion in the

number of times a particle has suffered a collision (i.e., a “collision”

expansion). In the light of this physical interpretation, we might expect

convergence to depend on whether the system of interest tends to deplete

(absorb) or multiply particle numbers in collision events. For example, we

might suspect that for neutron transport in a fission chain reaction,

[|K]| < l for a subcritical reactor, |1K|| =1 for a critical reactor, and

“K ll > 1 for a supercritical reactor.

To be a bit more precise, in bounded systems we can estimate the norm

of K as:

-2 -1/

||KH=HfdarreXP( tlr DCE, =O(CE!I)

4vr|r—r'|2

where I is some characteristic dimension of the system (e.g., an average

chord length, <R>). Hence if

||K||= 0(c2,l)<<l

that is, if I<<mfp or c<< l, the expansion Eq. 2.41 should converge rapidly.

For very small systems or highly absorbing systems, the particles will

experience very few collisions before leaking out or being absorbed. Then

naturally the Neumann or collision expansion should converge rapidly.
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ONE—SPEED TRANSPORT THEORY [I 73

2.2.3 II] General Methods for Solving Boundary Value Problems in Trans-

port Theory E1 The collision expansion method is particularly useful for

the study of transport in small, highly absorbing systems such as neutron

transport in fuel pins or control rods.8 However for systems in which

scattering interactions are dominant, the expansion will converge very

slowly and a more direct method for solving the transport equation must

be utilized. The particular method will depend sensitively on the details of

the transport problem we wish to consider (e.g., the geometry, type of

boundary condition, source distribution).

To illustrate the various methods available for solving the transport

equation, let us consider a very simple problem, that of a plane source of

infinite extent emitting particles isotropically at the origin of an infinite

medium. Then the appropriate forms of the transport equation we wish to

solve are the one-dimensional (plane symmetry) integrodifferential or

integral forms of the transport equation (refer to Table 2.3) with a source

term S(x)= S(,8(x). We must augment the integrodifferential equation with

appropriate boundary conditions—for example, by requiring (P(X,IJ.) to be

bounded as |x|—>oo. A similar condition requiring ¢(x)< 00 as |x|—>oo will

be necessary for the solution of the integral equation (see Figure 2.11).

x>0

(“\\\\ \\ \\\\\\\x in

Fig. 2.1] [3 An isotropic plane source in an infinite medium.

How might we solve such transport equations? Perhaps we can take a

hint from methods used to solve the more familiar diffusion equation for a

similar boundary value problem. To this end, consider the plane source

problem in diffusion theory:

‘12¢

— D71—2 + 2a¢(x) = S08(x) (2.42)
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74 1:1 EXACT SOLUTIONS

with boundary conditions:

. . d¢ _ S0

1 @1510 D dx ' 2

ii lim ¢(x)=0

|x|—>oe

The two most common methods available for solving such boundary value

problems involve integral transforms and separation of variables (or ele-

mentary solutions).

Method 1. Integral Transform Method. The infinite domain x E

(— oo, 00) suggests that we define the Fourier transform pair

i<k>= fldxe'kwo). ¢(x>=,—‘,, flee-"run

If we now multiply Eq. 2.42 by exp(ikx) and integrate by parts, we arrive

at the transformed equation

(kzD + 2,)5>(k) = so

which we can solve for the transformed solution <l>(k)

~ S S / D 1) V2

¢(")=2—°—='2°—_2’ L ( )

k D +2“ k + L

We now must invert this transform. For most boundary value problems,

this must be accomplished directly using contour integration methods.

That is, one writes the Fourier inversion integral as

_ 1 w H,“ 80/ D

‘MW/J“ then locates the singularities of the integrand in the complex k-plane,

performs an appropriate contour deformation, and evaluates the contribu-

tions from each of these singularities (e.g., residues from simple poles, line

integrals from branch cuts). For our particular problem this procedure

yields (see Figure 2.12)

e_ikx _ SOL _x/L

‘PM: 211 C (k+i/L)(k—i/L)_2De x>o
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k—Plane

'14

4—— -—>——— —>——-—>—}

\ ll

\ r" _,

\ \ili /

\ /

\ /

\\_e//

Fig. 2.12 [1 Integration contour for plane source problem as described by diffu-

sion theory.

Method 2. Separation of Variables. We first seek elementary solutions to

the homogeneous equation counterpart of Eq. 2.42. For an equation in

several independent variables, we would seek these elementary solutions as

separable products of functions of each variable. However for the simple

ordinary differential equation (2.42) we can bypass this step by noting

immediately that the elementary solutions must be of the form ¢(x)~

exp(— rcx) where r: is an unknown parameter. If we substitute this form

into the homogeneous equation, we can evaluate this parameter as

E l/2

_K2D+2‘I=0=K=i($a) =iL—l

to find the general form of the solution to the boundary value problem as

¢(x) = alex/L + a2e_‘/L

Then the expansion coefficients al and a2 can be determined by applying

the boundary conditions: i =>al =0 for x >0, ii =>a2= SOL / 2D to find

the solution

L

¢(x)=~:LDe'x/L, x>0

Note that the unknown parameters it that appear in the separation of
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76 El EXACT SOLUTIONS

variables approach (or “method of elementary solutions”) play the role of

relaxation parameters. We later find that they are intimately related to the

eigenvalues of the operator governing the diffusion (or transport) process

of interest.

With this background, let us return to consider how we might attack the

more general transport problems. We can apply the same techniques we

used to solve the simple diffusion problem: integral transforms and separa-

tion of variables. The integral transform approach has been applied to the

solution of transport problems for many years, and aside from a minor

complication due to the nature of the boundary conditions imposed in

certain types of transport problem (which necessitates the use of the

Wiener-Hopf method to perform the transform inversion), its application

to these problems is very similar to that characterizing more familiar

boundary value problems for partial differential equations.

The separation of variables approach or method of elementary solutions

is of more recent vintage in transport theory applications because the

elementary solutions to the transport equation tend to be somewhat

singular (and tend to involve distributions such as 6-functions and Cauchy

principal values). However once some additional mathematics is in-

troduced to facilitate the manipulation of these singular solutions (or, as

we will see, singular eigenfunctions), this method can also be applied to

transport problems in a straightforward fashion.

Although integral transform and separation of variables methods in

transport theory are equivalent, both in power and ease of application, we

discuss both approaches for completeness. We begin with the integral

transform approach, in keeping with historical precedent, and also because

it involves somewhat less in the way of unusual mathematics.

2.2.4 1] Integral Transform Methods [1

Plane Source in an Infinite Medium III In considering the problem of

determining the angular flux produced by an isotropic plane source located

at the origin of an infinite medium, recall that the form taken by the

one-speed transport equation for this problem is

3 c2 +1 , I S

ta—‘f; max. 11)= 7' [A dt as.” )+ 7° 86) (243)

with boundary conditions:

lim (P(X,1L) = 0

|X|—>oo
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The infinite domain x E( — oo, 00) suggests that a Fourier transformz' 18' '9

is appropriate for this problem. To this end we define the Fourier trans-

form pair

: °° ix I °° —i ~

<P(k,u)Ef_ dwkflx’ti), <P(X’H)=Ef_ dke ""<P(k,11)

If we now multiply the transport equation (2.43) by exp(ikx) and integrate

over x, using integration by parts to handle the derivative term (and noting

the boundary conditions at x->-_'- 00), we find the transformed equation

2 S

— ikwi>+2.¢= Q f Hdu'<i>(k,#’)+ —° (2.44)

2 _| 2

Now divide this equation through by (2, — ikp.) and integrate over p.

- +l ~ - +l _ _

NOEL‘ ¢11“v(k,11)=[CE,<1>(k)+$0]%f_l dMl-M) '

Therefore we can solve for the angle-integrated flux as

<i>(k)=

(so/2) “dun-tar‘

L‘ H E X0‘) (245)

1-(c2,/2)f_l dp.(E,—ikp.)_' A(k)

If we substitute this back into Eq. 2.44 we can solve for the angular flux as

_ _ (¢E./2)x(k) so/z

WW)“ (El—ikMMk) + (a-ikt)

Therefore all that remains is to invert the transform to find

_ 1 no —ikxm

¢(x)- 2,, fwdke ¢<k>

Before we attempt this inversion, let us briefly digress to consider how

the analogous problem would be attacked using the integral transport

equation

¢(x)— f_:dx’E|(>3,|X-X’|)(%)¢(X’)=(%)EI(E.X)
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We can again use Fourier transforms if we recall the convolution theorem

6‘ 0° " "

J{ j dyf(x—y)g(y)} = time? 8} =r(k)g(k)

— 00

so that the transformed equation becomes

~ c2 ~ ~ S --

¢<k)—(T')E.<k>¢<k)=( —,‘1)E.<k>

A little work (or integral tables) will show that

00 A k 1 2 +ik +1 d

Ikx = —l —| _ = _ —' = p‘

Lwdxe EKEIIXI) 2k tan (2') ik1n(E'-ik) .lll 2,-ikp

Therefore we arrive at a solution identical to that resulting from the

transformed integrodifferential transport equation:

s0 2,+ik

Mk): tso/ntan—tk/z.) = Tiknll—ik) =><<k>

1—(c2,/k)tan_'(k/Z,) l_ C_2lk1(2,+ik) A(k)

2ik E,—ik

(2.46)

Thus our only remaining task is to perform the Fourier transform inver-

sion. To accomplish this, we utilize contour integration in the complex

k-plane. The general scheme is as follows:

i Note that the Fourier transform we have been utilizing is defined

for real k. Therefore we must analytically continue the definition of

¢(k_) to the complex k-plane. Then we examine the analytic behavior

of qi>(k) in the k-plane.

ii Peform the original inversion contour around the singularities of

¢(k).

iii Evaluate the contributions. from these singularities, including re-

sidues from poles and line integrals from branch cuts.

Therefore let us begin by analytically continuing <i>(k) into the complex

k-plane by simply interpreting the explicit form given by Eq. 2.46 as a

function of complex k. We note that <i>(k) has a pair of branch point

singularities at k= iiE, because of the ln[(E,+ik)/(Z,—ik)] term. To
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ONHPEED TRANSPORT THEORY El 79

define this logarithm function as a single-valued function, therefore, we

must insert branch cuts. The choice of a branch cut arises very frequently

in mathematical physics, and it is almost never uniquely determined by the

mathematics of the problem alone, but in addition usually requires a dash

of physics. In our case we can merely recall the form of the angular

integration in Eq. 2.45 that led to the logarithm term. If we notice that this

integral is “singular” for k=E,/i11 for p.6[— 1, +1], we find that we must

choose the branch cut along the imaginary axis as shown in Figure 2.13.

Now that we have taken care of the branch points, we look for isolated

singularities such as poles. At first it appears that the origin k=0 is a

candidate, but if we note that ln[(2, + ik)/(E, — ik)]~2ik/E, for small k, it

is apparent that (l/ik) times this quantity is_ analytic in the cut-plane.

Therefore the only possibility for poles of 4>(k) involves zeros of the

denominator A(k):

_ _cE, 2,+ik _ _¢2, _,(k _

A(k)-1 2ik1n(2|_ik)-1 tan -0 (2.47)

k 2,

In fact, since k_'tan"(k/E,) is even in k, then if k0 is a zero of A(k), so

also is k = — k0. A more detailed analysis reveals the presence of two zeros,

: k0, of A(k) [and therefore two poles of ¢(k)]. Using graphical

techniques, we can identify three possible cases depending on the value

k — Plane

12,

:11: iko

—) ——~> —)

>ll< ——i1<0

r 421

I

I

r

r

I

a

I

Fig. 2.13 I] k-Plane structure for plane source problem.
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80 U EXACT SOLUTIONS

of c:

c>l There are two real roots, :ko, which lie on the real axis and will

correspond to solutions of the form exp(: ikox).

c=0 In this case, k=0 is a double root.

c< 1 There are two imaginary zeros 1- ixo, which correspond to solutions

of the form exp(i KOX).

Actually, as we show later, in the case c <1 we obtain solutions exp(: KOX)

similar to those obtained in diffusion theory (cf. Section 2.2.4). In fact, no is

essentially just the inverse of the “diffusion length” L = (D / 2a)” 2. That is,

for small absorption such that c% 1, we can expand the root of Eq. 2.47 to

find

K0=2,[3(1-c)]'/2[1-(%)(1-C)+---l, |l—c|<<l

But since we can identify L2=[3(l —c)2,2]_‘, we find that this expansion

yields the diffusion theory relaxation length L to lowest order in l— c.

Armed with this information, we now return to the inversion of the

Fourier transformed flux ¢(k)

¢(x) = 2L,” f_:dke_"kx%

We have determined the singularities of @(k) to be as shown in Figure 2.13

(for c < 1). Suppose that k is in the lower half-plane. Then for large x >0,

exp[— i(— ix)x]->exp(— xx)-+0. Thus for positive values of x, we can

deform the inversion contour into the lower half k-plane as follows. Apply

the residue formula to the closed contour shown in Figure 2.14. Then

symbolically we would find

¢=2lni Res(k = — ixo) = 21ri( $38-11} )X(iico)e_"°" EZ'rraOe'W‘

If we shrink the smaller radius to zero and expand the larger radius to

infinity, we can identify

2 l . . _- x(k) _

x =— — 11m —11m dke ""‘———+a e "°"

¢( ) 2'IT[ R—wo CZ+CJ+CS+C6 r—>0 C4] 0

(2.48)
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k~Plane

CI

J——-—>————> —-—-——--—>———l

1 ,1

'1 'V”

\ /' If

\I, ‘ ‘- ~mo /

\ c, I, >‘ //

\ l u

\ 1' /

~6\ C51 T C3 / C2

\ /

Fig. 2.14 1:] Integration contour for Fourier transform inversion.

Let us proceed more carefully to evaluate each of the contributions to this

integral.

C4 Since k= — i2, is not a pole, fc ->2-rrr->0 as r—>O.

(3,, 06 For large k = R exp(i0), ln[(l + iR e‘”) /(1 - iR e‘io)]—>ln(— 1) =

i in. Hence we find x(k)/A(k)—>0(l/R) as R->oo. At this point,

it is easiest to recall a “well-known” fact concerning Laplace

transforms (which are, of course, a special form of Fourier trans-

forms):

fdse"f(s)—§O as R—>oo when f(x)=0(R"),v>0

c

This fact (known in the trade as “Jordan’s lemma”)20 implies that

the integrals over C2 and C6 vanish as R—roo. [For the analogous

point source problem, <l>(k)~0(l) as R—>oo, and life becomes a bit

more complicated. Then a special limit procedure due to Cesaroz' ‘9

must be used.]
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82 1:] IDIACT SOLUTIONS

C3,C5 We can calculate the limiting value of the logarithm function as

k—>ir< from either side of the branch cut as

E,+ik

ln( 2' _ ik )—>ln

Then after some manipulation, we find

i _ 0° “1 —rot _ c2!

2wL$+C3—L' drc(2rc) e {[1 2“ In

E LwdrcAQQe—‘x

Zl+rc

Zl—rc

C3

C5

2+(c2,'11)2 _1

2r:

in on

E,+rc

Z,—rc

Therefore, after collecting together all these bits and pieces, we find that

we can write our inverted solution from Eq. 2.48 as

¢(x)=a,,e~~olxl+ f °°dKA(K)e—~IXI (2.49)

:1

Let us recall that rco<2,. Hence the “discrete” exponential mode is

spatially damped less than the branch cut contribution, and we would

expect that for large distances from the source plane, the solution will

assume an asymptotic form

¢(x)~a e"‘°"E¢ (x) for x>>2,_'=mfp

0 asy 7

But if we note that for c~1, rco~L_‘, this asymptotic form is similar to

that given by diffusion theory. Close to the source plane we must retain the

branch out term; therefore the terms “asymptotic” and “transient” are

frequently applied to each of the contributions in Eq. 2.49. The relative

magnitudes of each of these components depends on the value of c (e.g.,

the amount of absorption relative to scattering). For c<< l, we find that the

integrand A(rc) due to the branch cut contribution becomes more and more

peaked near r<=2,, while the root x0 approaches the branch point at

k= $12,. This causes the transient term to approach the asymptotic term

in magnitude.

Point Source in an Infinite Medium [1 A very similar approach can be

used to determine the flux resulting from an isotropic point source at the

origin of an infinite medium as described by the integral transport equa-

tion‘9

eXP(—Zrlr—r’l)

4rr|r—r’|2

¢(r) = fair’ [c2,¢(r’)+ sos(r)] (2.50)
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We now define a three-dimensional Fourier transform pair:

1

(2703

at); [diet-who). ¢<r>= [eke-Wk)

If we apply this to the integral transport equation (2.50), we find an

equation for the transformed flux

.. _ 2' _| k _ So _I k

Ono—(‘7? 1.311 T1311 2

or solving,

Sok‘I tan"(k/E,)

W‘): 1—(¢E./k)tan"'(k/Z.)

Then we can write the Fourier transform inversion as

1

(2'11)3

¢<r>= fd’ke—“"<i>(k)= ' L°°dkk2(si2f’)i><k)

(2112)

Once again we can use contour integration in the complex k-plane to

evaluate this inversion integral. Since the details of this inversion calcula-

tion are very similar to those we described for the plane source problem,

we give only the final result here:

4>(')= (2wr)_ ' [aoxoe"‘°’+ LindK/IMMc-"l

This result is quite similar to that of the plane source problem. Indeed, if

we recognize that the plane source can be represented as a superposition of

point sources, it is not surprising that we can relate these two solutions by

_ d¢

¢...(r)=—(2w> ‘WP‘

X=f

OI‘

¢,..(x)=2wfl TdR R¢..(R>

The Milne Problem: Solution by Way of the Wiener-Hopf Technique 13 We

have just demonstrated how integral transforms (in particular, Fourier

transforms) can be used to obtain the solution to the problem of an
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84 U EXACT SOLUTIONS

isotropic plane (or point) source in an infinite medium. The general

procedure was to transform the transport equation, solve the transformed

equation for the transformed solution, study the analytic structure of the

transformed solution in the k-plane, and finally invert the transform using

contour integration. But most problems in transport theory are not nearly

so simple. In particular, the second step of solving the transformed

equation frequently becomes rather difficult.

The infinite medium problems we have considered are examples of

so-called full-range boundary value problems in that the source and

boundary conditions are given for all values of p.€[— 1, +1]. By way of

contrast, consider a half-space problem with a free surface in which we

require a boundary condition of zero reentrant flux

<P(X0,u)=0, 11E[0,1]

Notice that this boundary condition implies nothing about q>(x0,p.) for

p.E[—1,0]. Such “partial-range” boundary value problems are consider-

ably more difficult to treat. (In fact, they are the analogues to mixed

boundary value problems21 that arise in partial differential equations.)

To illustrate how these problems must be approached, we now turn our

attention to what is perhaps the most famous problem of transport theory,

the Milne problem. The essence of the problem is to determine the emerg-

ing flux from a free surface, given a source at infinity. Typical applications

include the determination of the neutron distribution emerging from a

thick shield8 or the distribution of light emerging from the surface of a

star.22

To be more precise, consider the integral equation for the half-space

geometry illustrated in Figure 2.15:

¢(x)= c—§—'fwdx’El(E,|x—x’|)¢(x’), 0<x<00 (2.51)

0

Here we have simply truncated the integration in the more general form of

the equation. There is no source term in this equation, since one imagines

in the Milne problem that all sources are placed at infinity. To implement

the source condition, we recall from our study of the plane source problem

that far away from a source we expect to find an asymptotic flux behavior

of the form exp(— KOX). Thus we can attach a source condition by merely

requiring that any solutions that we obtain for Eq. 2.51 behave as

¢(x)~CeXp(|c0x) as .x—->oo

Therefore we now have an integral equation to solve with an accom-

panying condition on the solution for large x. Such integral equations arise
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% Fig. 2.15 [1 Half-space geometry for the

x = o Milne problem.

very frequently in physics, and the procedure we now describe for treating

the Milne problem can be used to find the solution to many such

equations. Suppose the range of integration in Eq. 2.51 ran from — co to

+ 00. Then, just as in the plane source problem, we could use a Fourier

transform and run through the standard procedure of transforming the

original equation, solving the transformed equation, then performing a

transform inversion. But the difficulty in such partial-range problems is

that the unknown ¢(x) in Eq. 2.51 is not defined for x <0.

Let us ignore this fact for the moment and forge ahead by taking a

Fourier transform, but take care to decompose it in a special way:

&<k>=f_"wdxe'**¢<x)+ f0°°dwiki¢<n§<ixk>+¢xk>

Since ¢_(x) for x>0 is defined as the solution to the integral equation

(2.51), ¢+(k) is presumably determinable. But we have no definition of

4>(x) for x <0. In lieu of a definition, we simply use the integral equation

(2.51) itself to formally define 4>(x) for x <0 by extending the range of the

independent variable to x <0. (Although it may make mathematical sense

to extend the integral equation in this way, it makes no physical sense,

since the region x<0 is a vacuum and is not described by Eq. 2.51.)

With this worry pushed aside for the present, we can go ahead and

Fourier transform the integral equation (using a modified version of the

convolution theorem) to find

02,1(2,+ik)$+(k)

¢+(k)+¢-(k)=[fi n m

or rearranging

A(k)<l>+(k)= -<l>-(k) (2-52)
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86 El EXACT‘ SOLUTIONS

where we define as before

_ c2, Z,+ik

I — 2‘ __ ik)

Now the next step in our~ standard integral transform procedure would be

to solve Eq. 2.52 for~ ¢(k). But how? This is one equation for two

unknowns, ¢+(k) and ¢_(k)l Fortunately, the Wiener-Hopf technique was

devised to solve just such a problem.”—23

We begin by studying the analytic structure of Eq. 2.51. First note that

from our source condition at x—>oo, ¢(x)—>0(exp(+ 1cox)), we can de-

termine that

Mk); [)wdxeikxax)

is analytic in the upper half k-plane, Imk >1c0.

We next try to arrive at a similar statement for <j>_(k) by examining the

limiting behavior of ¢(x) as x—> — 00. Of course, although we are not really

interested in the physical interpretation of ¢(x) for x <0, we can go ahead

and use the integral equation (2.51) to find

21

Mn=g

fwdx'EKEAx—x'l)¢(x’)~o(ez"‘), H— w

0

Hence we conclude that

- o .

<1>_(k)E f_ dxe'kxax)

is analytic in the lower half k-plane, Imk <E,.

As a final piece of information, we know that A(k) is analytic in the

k-plane cut from (— ioo, — i2,]_ and [i§,,ioo) with zeros at k= 1' iKo. Hence

the regions of analyticity of ¢+(k), ¢_(k), and A(k) overlap in a strip:

1co<lmk < 2, (see Figure 2.16).

Now suppose we could decompose A(k) into a quotient of two functions

>\+(k)

AJM

A(k) =

where A+(k) is analytic in some upper half-plane and )\_(k) is analytic in

some lower half-plane, and these half-planes have a common strip of
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V

Fig. 2.16 [:1 Regions of analyticity of functions in the Wiener-Hopf problem. (a)

4>+(k)- (b) ¢-(k)- (c) Mk)-

3
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analyticity within the strip 1co<Imk <E,. Then we could write Eq. 2.52 as

>\+(k)il>+(k)= ->\_(k)<l>_(k) (2-53)

for k in this strip.

Next, suppose we define a function

_KHE{ x4m§4m,1mk>%

—x4oa1m,1mk<a

First note that by construction, J(k) is analytic in the upper half-plane

Imk>1<o and lower half-plane Imk<2,. Furthermore, these two repre-

sentations are each analytic and equal in the common strip by Eq. 2.53.

Therefore we conclude that J (k) must be an entire function of k. (One can

use the identity theorem for analytic functions or analytic continuation to

show this.) We can now apply Liouville’s theorem“ to completely de-

termine J (k) by using its behavior at infinity. Then, once we know J (k), we

can solve for

and find

¢<x>= §f_°;dke—*X[J>.(k>+5>_(k>]

with the integration path confined to the strip x0<Imk <2,.

The key step in this procedure is the decomposition of an analytic

function into a quotient (or sum) of functions, each analytic in a different

half-plane with an overlapping strip of analyticity. This decomposition can

sometimes be accomplished by inspection. However for the Milne problem

(and most transport problems) it cannot, and we must employ two general

theorems due to Wiener and Hopf, which provide the detailed form of the

decomposition. These are stated and proved in Appendix A.

We note here only that the detailed application of the Wiener-Hopf

decomposition theorems to A(k) yields the result

(k2+ x3)

MU‘): (k+i2,)

eXp[¢.(k)]

>\_(k)=(k_12r)_leXP[1P-(k)]
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where we define

=L °°+""i 111(1)

f_w+ial d2 >al >K0

z—k’

:i oo+ib| ll/_(k)_ 2m, _°°+ibldz—Z_k , lmk<b|<E,

and

22+E2

Ell] ' A

.1... (,,,,) a

The detailed construction of A:(k) is given in Appendix A.

We can now use these explicit forms for l1:(k) to examine the behavior

of J (k) for large k and complete the solution of the problem. Since one can

show that \p(k)—>constant for large k, then exp[¢:(k)]—>l as k->oo. Fur-

thermore, since <i>+(k) is integrable, it must tend to zero at large k. Hence

we conclude

}‘+(k)‘l’+(k)_)kil>+(k)~o(l) as k_>°°

Similarly we can show that }\_(k)<l>_(k)~0(l) as k—mo. Hence by Liou-

ville’s theorem [i.e., if f(z) is an entire function and |f(z)| is bounded for

all values of z in the complex plane, then f(z) is a constant], we find

J(k) = constant = A

Thus we have now used the Wiener-Hopf technique to find

(Lil eXr>[ -\P+(k)]

<l’+(k)=A (k2+K5)

<i>_(k)= —A(k—iE,)ex1>[—~r-(k)]

The final step involves the inversion

— l 0° “lkX- i go —ikx~

Mara/<8 Wary/<6 a’)

As before, we can use contour deformation into the lower half-plane for

x >0. But since ¢_(k) is analytic in the lower half-plane, it will yield no
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contribution to the inversion. Thus we need only calculate

¢(x)=2ifl OOHE'dke_”"‘(—k+i2')e_‘*+(k)

—oo+i2, k2+x§

where

_]v 00+m. dz 22+}?

¢+(k _2"Ti —oo+ia|z_k1n (22+1c5 A(z)

If we deform our inversion contour as shown in Figure 2.17, we find that

our final solution takes the form

¢(x)=i m e—¢+(i~o)esox_i h e—M—uoe—w

2 no 2 K0

+L'€_L°°dse—.x( S-E. )[exp(—¢I(is))-exp(._¢;(_3)]

, sz—Kg

where 111i is the limit of 111+(k) as k—>i is.

Although the expression is rather ugly, this is the “solution,” the exact

solution, to the Milne problem. There are many manipulations one can use

to simplify this expression.25 However we defer a detailed analysis of the

solution until we re-solve the Milne problem in the next section, using the

separation of variables method.

The procedure we have just outlined looks rather cumbersome and

complex. And indeed it is! But even so, it is in many ways a more direct

approach to solving the types of boundary value problem that arise in

transport theory than the separation of variables method. It is an unfor-

tunate fact of life that transport problems that involve partial-range

boundary conditions are hard to solve! .

The Milne problem could also have been approached by application of

integral transforms directly to the integrodifferential form of the transport

equationzzé'27

aq) _ C2, +1 , I

p‘ ax +2tq>(x,”')— 2 LI ‘P(x,ll) subject to boundary conditions:

i <p(x,,u)~0(e"°"), x—>oo

ii <p(0,p.)=0, O<tt<l
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(a) (h)

Fig. 2.17 [I The original (a) and deformed (b) inversion contours for the Milne

problem.

Since Eq. 2.54 is defined on the domain [0, 00), it is appropriate to select a

Laplace transform pair

o+ioe

$0,105 f0 oodxf‘xflxm), <P(x,11)= f0 dw“i>(s,#)

7” ——ioo

Then if we Laplace transform the transport equation (2.54), we find

14844501)“ <p(0.11>]+2.¢(s.t>= _*| ‘damp

or after division by (E, +sp1),

- _ 621/2 +1 ,- . mat)

<t>(S,#)—(2'+s#)f_l du <P(s,11)+ 2th,“

Next, we can integrate over )1. and rearrange to find

A<s><i><s>= ffldfl%ig(s) (255)

Now note that @(s) is analytic in the right half-plane Res >1c0, and g(s) is
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92 El EXACT SOLUTIONS

Fig. 2.18 El s-Plane structure for the Milne problem solved by way of Laplace

transforms.

analytic in the left half-plane Res<2,. Furthermore, Eq. 2.55 is satisfied

in an overlapping strip of analyticity x0<Res<E,. Thus we can identify

the usual type of function equation in complex variables which is amen-

able to the Wiener-Hopf technique (see Figure 2.18).

Half-space problems of several different types can be approached in a

very similar manner (e.g., the study of the flux in the neighborhood of the

interface between two dissimilar media or the albedo problem in which

one calculates the flux resulting from a source incident on the free surface

of a half-space geometry). However since the cataloguing of the solvable

plane geometry problems in one-speed transport theory can be accom-

plished more efficiently using the singular eigenfunction method (once we

have constructed these functions and determined their properties for

half-space geometries, we can immediately obtain the solutions for any of

the “solvable” problems), we avoid further applications of the integral

transform method at this time.

2.2.4 [I Separation of Variables (Singular Eigenfunction Method) El An

alternative approach to integral transforms for solving the integrodifferen-

tial form of the transport equation is the analogue to the separation of

variables method commonly employed in solving partial differential equa-

tions (PDEs). Recall that the general approach is as follows:

1 Seek a separable solution, say <p(x, p.)= X(x)¢( p), to the homogeneous

PDE of interest.
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ii This will yield ordinary differential equations (ODEs) for x(x) and

111(11). These ODEs actually take the form of eigenvalue problems

A42,‘=>\¢,\, where A is the separation constant. The idea now is to

solve the ODEs—the eigenvalue problem—for all the elementary

solutions or eigenfunctions.

iii Finally one seeks the general solution to the original PDE as a linear

combination of these eigenfunctions

$0,114) = ; aixi(x)¢1(u)

and uses the boundary or initial conditions to determine the expan-

sion coefficients a)‘ (using a property such as orthogonality).

This procedure can also be applied to the transport equation in a very

similar manner—with one exception. Now the eigenvalue problem is not

an ODE, but rather an integral equation in )1. Furthermore, the eigenfunc-

tions are of a rather singular type—in fact, they are not even “functions”

at all, but rather generalized functions or distributions (e.g., 8-functions).

For this reason the separation of variables approach in transport theory is

sometimes referred to as the singular eigenfunction method. It is also

occasionally referred to as Case’s method, after K. M. Case who developed

the technique for neutron transport problems.28

Actually the general idea of expanding the solution to the transport

equation in a set of singular elementary solutions or eigenfunctions can be

traced back to Davison (1945).29 It was first applied to the study of

electron density oscillations in plasmas by Van Kampenf‘0 who also

extended the method to neutron transport. However in 1960 Case“ pro-

vided a very detailed analysis of the properties of the singular eigenfunc-

tions, including not only proofs of their completeness for a variety of

boundary value problems, but also prescriptions for determining the ex-

pansion coefficients, which greatly enhanced the power and versatility of

the method.32

Before we begin our discussion, however, it is useful to make one slight

change in notation. It has become customary to recast the transport

equation into dimensionless form when applying singular eigenfunction

methods. To this end we will measure length in units of mfp, Z,— ', so that

the integrodifferential form of the transport equation can be written as

8 c +1 , ,

Ila—Z +<P(x,#)= 5L‘ d1» <1>(X,11)+S(X,11) (2-56)
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94 El EXACT SOLUTIONS

Separation of Variables [1 We seek a separable solution of the form

<p(x,p.)=x(x)tp( p.) to the homogeneous form of the transport equation

(2.56). If we substitute this form into the equation, we find

dx _ g +1 . ,

nail/+2011— 2Xf_ld11 ‘#(H)

or dividing by X(x)¢( p.) and rearranging

ldx l c +1 l

___=-_+— d’ ' =constant=—— 2.57

xdx ” 2W _1 nal/(n) ,, ( )

where we have defined the separation constant, 1 / v. We can now solve the

spatial part of Eq. 2.57 immediately to find

x(X)=e“/"

This leaves us with an integral equation for \l/( p.) of the form

_ B = 2 H I I

(1 , )m) 2 f_} a MM) (258)

Frequently one just uses translation invariance 28 of the transport equation

q>(x,p.)—>q>(x+a,p.) to suggest an “ansatz” or guess that

Wm‘) = fx/"M '1)

Equation 2.58 is now our advertised eigenvalue problem for the eigen-

value v and corresponding eigenfunction \P,(1L). Before considering this

problem, let us make one further simplification. Since the normalization of

the ¢,’S is arbitrary (we are solving a homogeneous equation), it is con-

venient and customary to normalize 111,01) such that

i

f_ Tali/M r>=1 (2-59)

The Eigenvalue Problem [I Rewrite the eigenvalue problem (2.58) using

the choice of normalization (2.59) as

(v-toix 10% (2.60)

To be more precise, we wish to find those values of v for which there exist

nontrivial solutions 4.411) to this equation.
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But this is simply an algebraic equation for 11/,(11). So why not just divide

through to find

CV

2(v— I‘)

and then apply the normalization condition (2.59) to determine the values

of it that will allow such a solution? But we must be very careful here, since

if vE[— 1, +1], then v=p for some 11E[— 1, +1], and this division makes

no sense. Therefore we consider two separate cases, depending on whether

or not 1» lies in the interval [-1, +1].

44 11) =

Case 1: v6E[—l, +1]. Then weep. for any value of pE[——l, +1], and we

can divide Eq. 2.60 by (v— )1) to find

CV

20-11)

If we apply the normalization condition (2.59),

+1 _ _2 +1 d”, _2 11+]

f_] 2 _] V—IJ._ 2 lnV—I

\P.(11)=

we arrive at a condition on 11 that is necessary if nontrivial solutions (i.e.,

eigenfunctions) al/,( p.) to Eq. 2.58 are to exist:

r+l_

1-3111 -0

2 v—l

But notice that if we reinsert the mfp 2,— ' into the transport equation and

let 1r=(ik)", we find that this condition is just that which characterized

the presence of poles of our Fourier transform solution (cf. Eq. 2.47),

A(k)=0. Hence we can immediately identify two zeros or eigenvalues,

:vo= : l/iko, which shift about in the complex r-plane as shown in

Figure 2.19. Hence for v&[— 1, +1], we have found that there are two

eigenfunctions

1 c110

11/ ( ) + ”°

+ = _ — c— = —

°— " 2 il'o‘l‘ 2am)

The values 1 we are sometimes referred to as “discrete” eigenvalues, and

the corresponding eigenfunctions as “discrete” eigenfunctions or modes

(for reasons that will become apparent momentarily).
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u— Plane

v— Plane

)% 5 ’ I”) % <1—% "I 1 '7‘ %

—110 _1 +1 v0 ‘110 —1 +1 110

(a) (b)

11 —— Plane

at u,

{[1 ,1 '3

—1 +1

as _V()

(c)

Fig. 2.19 1:] Location of the discrete eigenvalues trio in complex v-plane. (a)

c< l. (b) c—>l. (c) c> l.

The case c=l is a bit pathological, since the eigenvalues vo—mo, and we

find only one eigenfunction, %( ,u.)= 1/2. However if we return to the

original transport equation, we can find two linearly independent elemen-

tary solutions for this case

<r>r(xrri)=%, <P2(X,ri)=%(X-ri)

Case 2: r/E[—1, +1]. Now (ll—ll.) can vanish for some uE[—1, +1]. In

connection with the general topic of eigenvalue problems in transport

theory, we demonstrate later in Chapter 5 that every v6[— 1, +1] is an
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“eigenvalue” with a corresponding eigenfunction. Because of their continu-

ous distribution, v€[ — 1, + l] are sometimes referred to as the “continuous

eigenvalues” or the “continuous spectrum of eigenvalues.”33'34 (We in-

troduce a more precise terminology in Chapter 5.) It should be noted that

this set VEl— 1, +1] corresponds to the branch out in the Fourier trans-

form analysis.

The corresponding eigenfunctions are of a very singular type

_2 1

+h(v)8(v—tt) (2.61)

where P is symbolic for a Cauchy principal value integration whenever

(v— 11)_' is integrated, and M») has yet to be determined. (For a detailed

discussion of principal value integration and Cauchy integrals, refer to

Appendix B.) Most references's'm'35 on the singular eigenfunction method

in transport theory give a heuristic motivation for the form taken by these

eigenfunctions, but these arguments are usually more confusing than

informative. A rigorous derivation of such forms must come from func-

tional analysis and the spectral theory of operators,“‘“‘"' a subject that

would take us too far afield at this point (although we return to consider it

in Chapter 5). Hence for the present we accept as a fact of life that Eq.

2.58 is an eigenvalue problem with a continuous spectrum vE[— 1, +1]

and corresponding singular eigenfunctions of the form Eq. 2.61. To de-

termine )\(v) we apply the normalization condition (2.60), taking note of

the principal value integration, to find

l+v

l—v

+1 (1”,

_| V-Il.

=l—cvtanh_'v

CV CV

>\(V)—I—TP —1—711’1

Therefore in summary we have found that the eigenfunctions of Eq. 2.58

can be written as

\PodnFfi

\P0_(11)=fi5

.p,(,.)=%1>pl” “(asp-,1), tq—l, +1] (2.62)

(Unless otherwise indicated, we confine ourselves to the case of c <1.)
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We are now ready to proceed to the third and final stage of our task, to use

an expansion in these eigenfunctions to obtain the solution to boundary

value problems. We consider two classes of such problems, as exemplified

by the plane source, infinite medium problem and the Milne problem,

which we solved in the last section using integral transforms.

Full-Range Boundary Value Problem E1 The general idea is to seek a

solution to the transport equation plus associated boundary conditions as

an eigenfunction expansion

<p<m>=a..¢..(bee/"0+a._¢._(t>e+*/"o+ fjl'dvAaMoe-v'

(2.63)

and then use the specific boundary conditions for the problem of interest

to evaluate the expansion coefficients a0+, a0_, and A(v). The particular

type of boundary value problem we consider first has boundary conditions

in which <p(x,p.) is given at a position x for the full range of p.€[— 1, +1],

for example,

<P(x0,#)=f(u), 11E["—l,+l]

There are two very important questions we must answer if we are to use

eigenfunction expansions such as Eq. 2.63 to solve such boundary value

problems:

i Does such an expansion make sense? That is, do the {111,} form a

complete set?

ii If the {111,} are complete, how do we determine the expansion

coefficients from a given boundary condition?

The answer to the first question is yes, as we demonstrate in a moment.

However let us first turn our attention to the second question. We recall

that the usual trick in PDE boundary value problems is to use the

orthogonality of the eigenfunctions. A similar approach can be used in

transport problems.

Theorem. Full-Range orthogonality. The {41,} are orthogonal in the

sense that

f'omooauom we’

—1
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ONE-SPEED TRANSPORT THEORY El 99

Proof The proof is trivial. If we multiply Eq. 2.58 by 41,,( p.) and integrate,

we find

+1 I), _ 2 +1 ’ I

[A nib—7) .-2f_l d“ 1h(11)}1h'(11)

Similarly, we can find

+1 I], _ 2 +1 I I

f_ld11{(l '17)1Pr' 2 _l du ‘l’y'(ll)}‘la(ll)

Therefore subtracting these two equations, we can arrive at

(l,—l) _"|‘dn¢.(n¢.o)=0

I’ V

which implies the orthogonality property.

It is useful to calculate the normalization integrals for v=v’. One can

show28

c 1 _ Vg)—i 2A010)

+1 6

"MEI l d1i145:(#)=i5v3(1,2_1

_ 0

and

2

1v(v)=»[>.2(v)+(%) ]

where we define N(v) by

llVeal/Mill'drw'mtn]=~<»>A<»>

The calculation of the normalization of the singular eigenfunctions ¢,( p.) is

complicated by the presence of a product of Dirac 8-functions. This can be

circumvented by use of the Poincare-Bertrand formula42 (see Problem

2.27).

To demonstrate how these orthogonality relations can be used, we solve

once again the problem of a plane source at the origin of an infinite

medium (c < 1):

3r _g +1 , , fi

#5 +<P(x.11)— 2L1 dll ¢(x,11)+ 2 8(X)
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\\\\\

=>

11=co§0

x<0

\\\ \st \\ \\

Fig. 2.20 E] Isotropic plane source at the origin of an infinite medium.

subject to boundary conditions: lim|x|_,°°<p(x,p)=0 (see Figure 2.20). We

will seek the solution to this problem as an eigenfunction expansion of the

form Eq. 2.63. Then the boundary conditions at infinity demand

+1

<p(x.it)=ao.%.(1t>e—X/”o+fo dvAomoe-v". x><>

¢<x.1t>=—ao_¢o_<i>e+X/Po— ffymonrioe—x/n x<0

If we next integrate the transport equation across the source plane from

O—e to 0+e and take the limit as e—->0, we find a source boundary

condition

S

+ — _ =—0

<P(0 .11) q>(0 .11 2“

We can substitute in our forms for qJ(O+,p.) and <p(0‘,p.) to find

S +

2—3 =ao+¢o+(ll)+‘lo—$011‘)+f_lldVA(V)¢v(ll)

To evaluate the expansion coefficients, we now multiply through by

nil/“(11) and integrate over ,11, using orthogonality, to find

+

a01=[N0:]_]f

1 S0

_1 1111111102005;

A(v>=1~<v>]‘-' ffl‘dwimzilj
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ONE—SPEED TRANSPORT THEORY El 101

Hence we can solve full-range boundary value problems rather directly,

provided we can verify that an expansion such as that given by Eq. 2.63 is

valid. To this end we now prove the following theorem.

Theorem. Full-Range Completeness. The functions 410+(u), %_(p.), and

111,01), vE[— 1, +1] are complete for the class of all functions f(;1)EH“

defined on the full range p.€[— 1, +1].

Proof. Here, H‘ refers to the class of all Holder continuous functions“2

(refer to Appendix B for a precise definition). Our approach to the proof of

this completeness theorem is somewhat different from the conventional

approaches utilized in mathematical physics. Typically one attempts to

demonstrate that a sequence of functions chosen from the set of interest

will converge (in some suitable norm) to any function in the class of

interest.33 We adopt instead a constructive approach3| and demonstrate

that we can represent any function f ( p.) in the class H "‘ as

m>=a..¢..(t)+a._¢._<t)+fj‘dvaauo) (264)

by actually proving that am, a0_, and A(v) exist and are uniquely

determined for any function f ( p.)EH *. To get a better idea of what is

involved in this proof, let us ignore a0+ and a0_ for the moment by

defining

f'( H)Ef( 11) — ao+¢o+( F)“ 110-4104 it)

If we now substitute our explicit form (2.61) for the singular eigenfunction

into Eq. 2.64, we find

f'(ll)=>\(ll)A(ll)+Pf_:ldl"2(%j

Notice that this is an inhomogeneous integral equation for A( 11.), although

of a singular type, to be sure, because of the (u—p)‘l in the integrand.

One refers to such equations as singular integral equations of the Cauchy

type. Extensive methods have been developed for the analysis of such

equations and these are described in the treatise of Muskhelishvili (and

briefly summarized in Appendix C).

Hence all we have to do to prove completeness is to demonstrate the

existence and uniqueness of a solution A(p.) to this singular integral

equation for any function f'( p)EH* and somehow determine a0: in the

process. We accomplish this in the most direct manner by solving the

integral equation for A( p.) in terms of an arbitrary f'( pt).

A0) (2.65)
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102 U DIACT SOLUTIONS

To this end, consider a function defined by

1 f+ld cvA(v)

”(z)=% _, ”2(»-z)

Now if A(v)EH"‘, then n(z) is analytic in the plane cut along the real axis

from [-1, + 1] (see Appendix B for details). Furthermore we can use the

Plemelj formula,“2 which gives the limiting value of a function defined by a

Cauchy integral of the form

_ 3L)

<I>(z)— fcdz t_z

as 2 approaches the cut from above or below

(D100); lim (I>(z)= Pf dtlql : 'rri<p(t0)

Z—>!oz C t_' to

(see Appendix B) to evaluate the limiting values of n(z) on the cut

from [-1, +1] as

n:(;1)= EigPflldv—zczff?) :t %A(ll)

Using this result, we can rewrite Eq. 2.65 in terms of the boundary values

of n(z) on the cut as

ftr)=ioo(§%)[n+<rr-n-oo]+wqn+<r)+n-(tn

or rearranging

incl].

2

%nm=ho+%%hum{uo— hwm Q“)

But if we define

__ _ +1 cz

A(z)=1 Ll dr———2(z _ v)

and note that on the cut this function assumes the limiting values

I = _ +1 cp. inch: incp.

A (,1) 1 Pf_ldv—2(H_V)i——2 A(p.)i——2
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ONE—SPEED TRANSPORT THEORY U 103

it is apparent that we can rewrite Eq. 2.66 as follows:

c , _ _

(7“)r<r>=A+<r)n+<r)—A (on (11). 1161-1. +1]

We now observe that A(z) and n(z) are analytic in the same cut-plane.

(This will not be true in general, as we will find in half-space problems.)

Therefore we can regard this as a boundary value problem in complex

variables for the product function A(z)n(z) and solve this problem using

the methods described in Appendix B to find

A(z)n(z) = j ‘at 263)) + n(z)

where P,,(z) is an arbitrary polynomial in z of order k. But since

A(z)n(z)->(1—c)/z->0 as z—>oo, we can apply Liouville’s theorem to

conclude Pk(z)=0. Therefore we can write

_ l +1 cvf'(r/)

"(‘)_ 2'rriA(z) h. dv2(u—z)

But n(z), at least as advertised, is supposed to be analytic in the cut-plane.

And we know that A(z) has two zeros, i v0. Therefore to keep n(z)

analytic at these zeros, we must require that

+1drr—cvf(v) =0

_l 2(111110)

OT

+1 cyf(y) _ +1 evil/(“(1') +1 cvilro_(v)

Ll dv2(uluo) — 0+ -1 dv 2(1/1'110) +ao_ -1 dv2(vlvo)

But these two equations can hold only if we choose

_ +1

a...=(~..> 'f_| (trauma)

Of course these are the same values for the expansion coefficients a0+ and

a0_ we obtained using the full-range orthogonality relations. With this

choice of a0:, n(z) is indeed analytic in the cut-plane, and we can find

A(v)=(%)["*(v)—n‘(v)]=[N(v)]_'f_:ldririv.(ri)f(ri)
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104 E] EXACT SOLUTIONS

(for the detailed manipulations, see Case and Zweifel,28 pp. 75-76). Thus

we have demonstrated the existence and uniqueness of the expansion

coefficients a0: and A(v) for any function f( p.)EH*, and our proof is

complete.

Although the full-range completeness property was first demonstrated by

Case3| using the constructive approach we have sketched, several com-

pleteness theorems of a more traditional nature have been given in subse-

quent investigations. For example, Kuséer and Shure“3'32 have proceeded

by demonstrating that the eigenfunctions {114,} satisfy a closure property,

which can be obtained by first writing

8(1l—P0)=ao+¢o+(#)+ao-ll’o-(lo'l' f_+lldvA(v)¢.(11)

If orthogonality is used to determine the expansion coefficients, one arrives

at the closure relation

2P0

8 — = —

(11 #0) 2V3A,(V0)

[ll’o+(#o)‘l’o+(P-)+‘i’o-(lLoPl’o-(P'H

+1 Foil/A wit/.01)

+.[_| dy VA+(V)A_(V)

One can demonstrate that this relationship is indeed satisfied by the

eigenfunctions {41,}.

A somewhat more formal demonstration of the completeness properties

can be given in terms of convergence arguments using methods of func-

tional analysis. We sketch yet another approach using resolvent integration

methods in the last section of this chapter.

Half-Range Boundary Value Problems [1 Suppose we wish to solve the

Milne problem as specified by the integrodifferential form of the transport

equation (2.54) and the accompanying boundary conditions given by

applying a singular eigenfunction expansion of the form (2.63). Then

applying the source boundary condition 1 at infinity, we find we must

choose ao_ = C and A(v)=0 for v6[— 1,0]. The boundary condition ii at

the surface implies (after some rearranging)

—c\1._(1»)=a..11..(v+(‘e/tom 11)

But this equation actually implies that we are expanding a function f ( p.)
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ONE-SPEED TRANSPORT THEORY 1:] 105

[in this case, C¢0_(11)] defined over the half-range 11E[0, 1] as

1

f(11)=ao+%+(#)+f0 wanna). 116 [0. 1] (26?)

Again, two questions arise:

i Does such an expansion make sense—do we have half-range com-

pleteness?

ii How do we evaluate the expansion coefficients 00+ and A(r)? Here

we observe that our earlier orthogonality condition does not apply,

since Eq. 2.67 is given over only half the interval [— 1, +1].

Again we prove a completeness theorem. Of course we expect life to be

more difficult in this case, just as the half-range problem treated by

integral transforms was more difficult and necessitated the Wiener-Hopf

technique.

Theorem. Half-Range Completeness. The functions 4104p.) and \p,( a),

vE[0, 1] are complete for the class of all functions f( p.)EH' defined on

the half-range 11E[0, 1].

Proof In a sense, this theorem is actually more useful than the full-range

theorem, since it is the only way of evaluating the expansion coefficients

00+ and A(v). (There is no direct way to obtain an orthogonality relation“4

over the half-range without going through the details of the proof.) Again

the idea is to demonstrate that the expansion

f(ll-)=ao+\l’o+(P-)+Luv/‘(1041111), PENN]

uniquely determines the am and A(v) for any f( p)EH'. As before, we

define

f'(11)5f(l1)_ ao+\l’o+( I‘)

and use the explicit form for 115(11.) to obtain a singular integral equation of

the Cauchy type for A( a):

f’(#)=>\(#)A(11)+f0'dv2—(;V—

w) A(v) (2.68)

The partial range of this integration complicates the solution of this

equation, just as the partial range x E[0, oo) complicated the solution of the
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106 [1 “ACT SOLUTIONS

Peierls equation by Fourier transforms. We cannot use the Plemelj formula

directly as we did for the full-range problem. Fortunately, the theory of

such singular integral equations42 is well developed, and standard methods

are available for solving them.

In Appendix C we demonstrate that the solution of equations such as

Eq. 2.68 involves three essential steps:

i The use of the Plemelj formula to reduce the integral equation to a

type of boundary value problem in complex variable theory known as

the inhomogeneous Hilbert problem.“2

ii The solution of an associated homogeneous problem known as the

Riemann-Hilbert problem.“2

iii The use of this solution to solve the inhomogeneous Hilbert problem

and obtain the solution A( p.) to the singular integral equation.

We briefly summarize each of these steps as it applies to the half-range

expansion represented by Eq. 2.68. The details for this and more general

problems are provided in Appendix C.

We begin as in the full-range case by defining a function

_i l cvA(v)

”(‘)_ 271th, d” 2(v—z)

which is analytic in the z-plane cut along [0,1]. Using the Plemelj formula

and our earlier manipulation of Eq. 2.66, we can rewrite the integral

equation 2.68 as

A+o>~*(it)-A—(it)n-<n=(%)r'tn. item] (269)

Notice that we can no longer directly apply the Plemelj formula to solve

Eq. 2.69 as we did for the full-range case Eq. 2.66, since n(z) is analytic in

the plane cut along [0,1], while A(z) is analytic in a different plane cut

along [— 1, + 1]. Therefore we must follow a far more laborious route.

First, divide Eq. 2.69 by A_( p.) to arrive at an equation for n*( p.) and

n'(p.) of the form

A+(11) + _ _ with

m" (ll)—" (ID-5m, HEW’I] (2-70)

Boundary value problems of this type are classified as the inhomogeneous

Hilbert problem. To solve this problem, we must first solve a related

homogeneous boundary value problem known as the Riemann-Hilbert
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problem, which requires that we determine a function X (2) that is analytic

in the plane cut along [0,1], is nonzero, and has limiting values on the cut

that satisfy the following condition:

X+(11)=A*(11)= ,- = -1 “w

X111) A-(i)'e"p[29(“)]’ ‘am-“m lzmol

We demonstrate in Appendix C that a suitable candidate for the solution

X (z) is given by

exp[l"(z)]=exp[ %j(;ldv_9_(l'l]

V "' 2

But to ensure that exp{I‘(z)] is nonzero and analytic, we must examine its

endpoint behavior at z =0 and 2 =1. Since €)(0)= tan‘ '0, we take 6(0) =0

(fixing the branch of tan—‘2). Then we have no trouble at z=0. By

examining the behavior of carp/ZN p), one can verify that 9(1) = 11. Hence

we find

exp[l‘(z)]~(l—z)exp[I‘,(z)] as z-+1

Thus we have to divide out the (1 — z) factor to find

- _ —' l ' 2(2

X(z)-(l z) exp[ 71]‘; d» V_Z

Now if we insert exp[2i®]=X * / X _ into Eq. 2.70, we find

X+(11)n+(11)-X_(#)"‘(11)=¢#X‘(11)f’(11)/2A‘(#), #E[0,1]

Since X (z) and n(z) are now both analytic in the plane cut from [0,1], we

can apply the Plemelj formula (see Appendix B) to find

__1_ L 1 car—om»)

"(I)" X(z) [21111, dV2A_(v)(v—z) “1(2)

The analysis in Appendix C indicates that Pk(Z)EO and we must apply an

additional condition

I cvX_(v)f'(v) _

f0dv——2A_(v) -0

so that n(z) will vanish like 1 /2 as z—>oo. This restriction determines a0+
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for us as

v _ v v VX—("N’ +0’) _]

ao+=[foldv_c )Hfoldv———-—c 2A_(v°)

We also have then

A(v)=(%)[n+(v)—n_(r)], vE[O,l]

Hence we have solved the singular integral equation (2.68) for A(jr) and

have determined a0+ in the process. Therefore we have explicitly demon-

strated the existence and uniqueness of a0+ and A(v), and the proof of the

half-range completeness property is finished.

We can now return and use these results to complete our solution of the

Milne problem. We need only set f ( u)= —C¢0_(p.) in our half-range

completeness theorem to find

110+=[-CL'dvi/(vM-(vfl[LldvflvMAvfl—l

where we have defined

_ g X ‘(v)

70/) _ 2 A_(v)

(this factor occurs very frequently in algebraic manipulations). Similarly,

we can calculate

n<z>= X(z‘fim. fo'dv 7") [— crate-ammo]

V_Z

and then arrive at the continuum expansion coefficient as

_ 2 + —

A(v)-( cy)[n (v) n 0)], v€[0,l]

Needless to say, these results are still messy. However we can simplify

things a little by using some identities involving the X (z) functions, which

are proved by Case and Zweifel.28 We simply state results here and refer

the reader to other sources for details:

c(l — c)v§r/CX( — vo)X(— v)

N(I’)

A(v)=—
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and

a : CX(_ I'0)

0+ X00)

If we now use these forms in the eigenfunction expansion

<P(x,#)= C%-(11)e"/'°+ao+%+(11)e_"/"°+LldvAUNJ toe-X”

we arrive at the solution to the Milne problem.

This solution is still rather opaque. It does simplify for certain applica-

tions, such as the determination of the emerging angular distribution at the

surface (for C= 1):

cv er 1 cvA(v)

0, = ——0 + a ——0 + P dv

1“ '1) 200+ 11) °* 2(1'0—11) fo 2(P11)

+ fo'dmnso-mo)

Since we are interested in p. <0, we note that the last term in this

expression vanishes and furthermore that the principal value integration in

the third term is no longer needed. Then if we use our expressions for a0+

and A(r), a bit of algebra leads to the result:

CV5)“ - I’o)

X(1')(v5—112)’

This result is plotted for various values of c in Figure 2.21. As c—>l, the

solution assumes a linear dependence on angle, <p(0,)1)~A + Bu. As c->0,

q>(0,11) approaches a singular form corresponding to streaming perpendicu-

lar to the surface. That is, we find a strong forward peaking in the angular

flux for large absorption. We can also evaluate the total flux at the surface

as

<P(0,11)= 11 < 0

¢<0> =2».(I — c)"2X( — r.)

One can play around with these solutions indefinitely, proving all kinds

of fancy identities and manipulating the solutions like a Chinese puz-

zle.28'32 The only other result we choose to consider here involves the

calculation of the “extrapolated endpoint,” which is customarily used to

yield a free surface boundary condition in diffusion theory. For large x
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c= 0.5

¢10.u1

0 0.2 0.4 0.6 ‘0.8 1.0

_Il

Flig. 2.21 [1 Emerging angular flux distribution from a free surface. From Case et

a .

(far away from the boundary), we can ignore the transient term to write

1P(X’11)~ll’o—ex/v°+ “0+ ‘hue—x”0+ 0(e_)‘)

or for the total flux

¢(x)~ex/y°+ “0+9 _x/y°

We define the “extrapolation length” 20 as the distance outside the surface

at which the flux in the interior extrapolates to zero. To evaluate this, we

just set (see Figure 2.22)

<1>( — 20) = e _z°/’°+ “0+ ez°/y°= 0

Therefore we can solve for 20 as

z<>=-(%)lna..=-(g)..[%;_o>
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\\\

txlvo 4, do.‘ —x/u0

—x/|/

—a0, e 0

5:1;

Fig. 2.22 1:] Determination of the extrapolated endpoint from the asymptotic

solution of the Milne problem.

A detailed evaluation of the X (2) functions yields the familiar result (at

least to nuclear engineers and astrophysicists)

_ 2 _ 3

20=0.710446 %-0.0199% + o((l—C-c)—)]

Half-Range orthogonality Relations E! For several years following the

introduction of the singular eigenfunction method by Case, the half-range

completeness theorem was the only way to evaluate the expansion

coefficients. However in 1965 Kuscer, McCormick, and Summerfield“

developed an orthogonality relation that could be used to evaluate the

expansion coefficients directly. That is, if we wish to expand some function

f(11) as

n 11)=ao+\l’o+(1l)+ [0 ‘Mom I")

then to evaluate the a0+ and A(v), we can use the half-range orthogonality

relation

[0 '¢111W(#)1P.(11)\P.'(u)=0, Her

The determination of the weighting factor W( p.) involves solving a singular

integral equation.28 We avoid the detailed construction of W( it) here and

merely note the orthogonality relations themselves.
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If we choose

(61l/2)(V0_#)X_(11)

A111)

the corresponding half-range orthogonality relations become

W(11)=7(11)(”0"'11)=

fo‘dt W< 1011mm ll)= Wow—wmso— r)

c1;o

L‘dtw<t)¢o.<t>¢o.<b=1( 2 )zxw.)

[0 ‘a W( imam 11>=0

fo'dt W(11)%-(11)\P..(#)=CWoX(—1'o)¢o-(”)

LldIlW(11)4/o+(11)¢-»(ll)=(CZZVO)X('V)

f ‘a W(H)\P¢(I1)1P_1(H)=('02l,)‘P-..(V')(V0+V)X(_ »)

0

Note that the half-range weighting function W(11) is simply related to the

Chandrasekhar H-function,32’45'46 which appears in the literature of radia-

tive transfer, by

W( 11) = 11H( 1‘)

Example. The Albedo Problem. In this problem we are given the incident

beam of particles on a free surface and wish to determine the distribution

within the medium. The appropriate form of the transport equation is

atp _ c +1 1 !

11$ +<P(X,H)— 5L1 dli <P(X,Il)

with boundary conditions:

i xliggo<1>(x,u)=o

iiq>(0,u)=8(#—1L0), #6101]

The boundary condition 1 at infinity demands us to seek a solution

¢(x.1»>=a..¢..<t)e—*/"o+ f0'dvA(v)\l/.(u)e"/”
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Then applying condition ii, we find

1

int—inflow» f0 ammo. “>0

If we now multiply by W( n)¢,( p.) and integrate over '1, we find

Minnow... fo'di W(11)¢0+(u)¢.(n)

+ f0 'dv'AW) [0 ‘a W( 10M on ll)

01'

VW( MM Po)

A“): Now/(v)

Similarly, if we multiply by W( p.)¢0+( p.) and integrate over 11, we find

_ _ 27(110)

0+ CV0)“ I’o)

Thus our final solution can be written as

2'Y( #0) _ x/y

x, = — —— 6 °

(p( (‘VOA/(yo) "PO+(

‘Al/ll #0))“ ll) e_x/»

N(v)r(v)(vo— II)

The half-range orthogonality relations have made short work of this

half-space problem. All the work has been done for us in the construction

of W( p).

+(vo—imonfo'dv

Unfortunately, the list of problems that can be solved using the half-range

completeness and orthogonality properties is rather shortn'n'“ One can

obtain the Green’s function for a half-space, or solve for the flux in a

medium composed of two adjacent half-spaces, each composed of different

material (see Figure 2.23). It is also possible to formally solve the transport

equation characterizing a slab geometry, although in the last case the

“solution” eventually yields for the expansion coefficients an integral

equation that must be solved numerically.“7 In effect, singular eigenfunc-

tion methods yield explicit solutions of the transport equation only for

one-dimensional geometries with at most one boundary.
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//

I-‘I-III-‘-"I,"‘II'I'I'II'l-‘I'.--

5‘

e.

a,

u-

C

Fig. 2.23 El The solvable problems in one-speed transport theory. (a) Green’s

function for a half-space geometry. (b) Two adjacent half-spaces problem. (c)

Finite slab geometry.

Some Further Comments on the Singular Eigenfimction Method El All too

frequently one hears claims that the singular eigenfunction method exhibits

certain advantages of simplicity and elegance over the more conventional

Fourier transform (Wiener-Hopf) method for solving the transport equa-

tion. It should be apparent from our discussion, however, that these two

approaches are very similar, both in mathematical content and ease of

application. But this should not be surprising, since integral transform

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



ONE-SPEED TRANSPORT THEORY E] 115

methods are intimately related to eigenfunction expansions.

To illustrate this, consider first the case of full-range boundary value

problems. If we let k =2,/iv, the eigenvalues in the singular eigenfunction

method become the singularities in the Fourier transform plane (see Figure

2.24). This identity arises for a very fundamental reason. Suppose we

consider an operator problem of the form

8f _

E'PAf-g

where A is an operator and f (x) is the unknown function defined on

x E(— 00, 00). If we take a Fourier transform in x, we find

(A — ik>i=§

or formally

i=(A —ik)“§

Then we can invert this expression to find

1 °° _- x . _ -

f(x)= E f_ dke ’* (A —1k) ‘800

But to accomplish this inversion, we must study the singularities of

(A — ik)“l in the k-plane. Of course these singularities are just those points

at which

(A — ik)\I/=0 or A114,, = ikrl/k

that is, where ik is an eigenvalue of A. Chapter 5, which discusses

eigenvalue problems in transport theory from the more general viewpoint

of the spectral theory of linear operators, clarifies these ideas.

In half-range boundary value problems, both integral transform and

separation of variables methods lead eventually to a functional equation in

complex variables. The integral transform approach yields an equation

relating the two unknown “halves” of the Fourier transform, ¢+(k) and

¢_(k)1

G(k)<i>+(k)-<i>_(k)=f(k)

Furthermore, we can show that <l>+(k) and <l>_(k) are analytic in comple-

mentary half-planes and in a common strip. The Wiener-Hopf method can

then be used to solve this equation by a suitable decomposition of known
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k — Plane

i3,

-)(- irco

* —ir<o

--12,

(a)

v — Plane

—->e—mm—*—

_,,o __1 +1 +110

(17)

Fig. 2.24 [:1 Comparison of analytic structure of (a) Fourier transform (k-plane)

with (b) eigenvalue spectrum (rt-plane).

116 1:1
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functions that allows the application of Liouville’s theorem to determine

the unknowns.

In the separation of variables method, we identified the evaluation of the

expansion coefficients in an eigenfunction expansion using specified

boundary conditions as equivalent to solving a singular integral equation

of the Cauchy type. Then using the standard techniques of Muskhelishvili,

we reduced this equation to a boundary value problem in complex vari-

ables—the inhomogeneous Hilbert problem

G(ri)‘1>+(ri)—‘I>‘(ri)=f(ri), riE[-l,+l]

Again a factorization of known functions (the Riemann-Hilbert problem)

was used to solve this functional equation.

It is important to recognize that the application of singular integral

equation methods could have also been used in the integral transform

approach (although this makes for a rather round-about way of solving

transport problems).32 Consider by way of example the Milne problem in

which a Laplace transform has been applied directly to the integrodifferen-

tial form of the transport equation to find

A<s>$m= fj’ldt-"gég 12-71)

Then if we note that

we can rewrite Eq. 2.71 as

A(s><i><s>= fie—"gaff

which is just a singular integral equation of the Cauchy type and therefore

is amenable to the methods described in Appendix C.

Therefore one can either use the Wiener-Hopf method to solve the

transformed transport equation or recast this as a singular integral equa-

tion and then reduce it to a Riemann-Hilbert problem. Both methods

eventually obtain a solution by decomposition of the “dispersion function”

A(z) characterizing the spatial relaxation modes of the transport equation

and then appealing to Liouville’s theorem.

Even the structure of the decomposition of A(z) in each approach is

remarkably similar, as Figure 2.25 should make apparent. Furthermore,
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HS 1:] EXACT SOLUTIONS

k — Plane

11 — Plane

Fig. 2.25 [:1 Comparison of the (a) Wiener-Hopf and (b) Riemann-Hilbert de-

compositions of the dispersion function A(z).

the specific forms of the solutions are similar. Thus, in a very real sense,

the integral transform (Wiener-Hopf) and singular eigenfunction (Rie-

mann-Hilbert) approaches are almost equivalent. (Of course each of these

techniques has its own following of devoted disciples—the “Caseologists”

and the “Wiener-Hopfers”—and most comparisons of the two methods

usually include a long discourse on why one method is better than the

other. But that is the way the game is sometimes played.) Excellent reviews

of the Wiener-Hopf and singular eigenfunction methods (along with a

rather detailed comparison of the methods) have been given by Williams26

and by McCormick and Kuséer.32

2.2.5 E] Some Generalizations El

Anisotropic Scattering E] In our earlier analysis in this chapter ‘we have

assumed that the scattering probability was isotropic [i.e., f(SZ’—>Sl)=

1 /4w]. However in many cases this assumption is inadequate: for example,

in the case of fast neutron transport48 or photon transport“9 in atmo-

spheres. To generalize our treatment, we represent the scattering probabil-
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ONE-SPEED TRANSPORT THEORY [:1 119

ity as a finite term expansion in Legendre polynomials of the form

A, ~ _ ” 21+1 ~, ~

roan-1;] 4, )fiPMl-fl)

where the expansion coefficients, j}, are presumed known. Then by sub-

stituting this into the one-speed transport equation and using the addition

theorem for spherical harmonics (see Chapter 4 for details), we can write

the more general one-speed transport equation (in dimensionless notation)

N +

rig—Z + <P(X.u)=§ 2 (21+ l)f1P1( 10f IdM’PK 11')<P(x.11’)+s(x,#)

1-0 ‘I

The extension of the singular eigenfunction method to this equation was

first given by Mika.50 We seek solutions in the usual form

<P(X,#) = 1M toe—x” (2-72)

and then substitute this ansatz into Eq. 2.72 to find the eigenvalue problem

for v:

N + v

(v—mmi 2 (21+1)f1P,(11)f ldll'P1(ll')‘Pv(ll')Ec—M(PW)

2 1-0 —1 2

If we multiply through by P,,( a), integrate over a, and use the orthogonal-

ity properties of the Legendre polynomials, we arrive at a three-term

recursion relation for

44k E ff] ld#'l’k( 11’)¢.( 11')

of the form

"(1 _cfl<)¢vk_(%)¢vk+l_(%)¢vk—l=o

This can be used to determine ‘PM, subject to the normalization condition

‘Pro: 1- _

We can restrrct vGE[ — 1, +1] in the usual way to determine a condition

for the discrete eigenvalues

N +

A(v)=1— Q 2(21+1)1;¢.,f_|'d1t5’(—"l =0

21-0 "-11
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120 El EXACT SOLUTIONS

Because we now have a sum of N integrals in this equation, we might

expect to find more than just the two zeros two, which occurred for

isotropic scattering. One finds 2M discrete eigenvalues iv]- in general,

where M <N, and the corresponding discrete eigenfunctions become

on M ,iv-

j=L-H,M

iw—p

(See Mikas0 or Case and Zweifel28 for details concerning the location of

the discrete eigenvalues.)

Just as in the isotropic scattering case, we find that those v6[— 1, +1]

correspond to the continuous spectrum of eigenvalues with corresponding

singular eigenfunctions:

1

v-#

tt<i>= %PM( it») +>\(P)8(1L— v)

where A is again determined by the normalization condition. With only a

slight complication in algebra, we can prove that these eigenfunctions are

orthogonal and complete over the full range [— 1, +1] and complete over

the half-range [— 1,0] and [0, +1] (for details, refer to Mikaso).

Hence these eigenfunctions can be used to solve any of the standard

problems we have discussed for the case of isotropic scattering—at least

formally. However from a practical standpoint, the calculation becomes

extremely awkward unless N is small (e.g., N =0 or N = 1).

Finite Geometries with One-Dimensional Symmetry [II We begin by noting

that the integral transport equations for slab and sphere geometries are

very similar:

SLAB

¢<x>=§ fo“dx'E.(|x—x'|>¢(x'>+s.(x)

SPHERE

¢<r>=§7 0”/2dr'r’[E1(|r—r’D—E|(|r+r’l)]¢(r’)+s0(r)

If we let @(r) = r¢(r) and 4>0(r) =<i>(r —— a / 2) in the equation for a sphere, we

find

¢0(x)=il.”dx'E1<IX— x'|>¢.<x'>+ (X- ihlx— %)
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ONE-SPEED TRANSPORT THEORY El 121

which is identical to the slab equation, except that we have an asymmetric

source term. Hence if we can solve the transport equation for a slab, we

can also solve it for a sphere.

But how do we solve the problem of the one-speed slab geometry? We

could try an expansion in singular eigenfunctions (see Case and Zweifelsl

or the original work by Mitsissz). But this is rather awkward. A more

elegant technique, proposed by Leonard and Mullikin,53 is based on

integral transforms. Consider the integrodifferential transport equation for

a critical slab of width 2a:

31> _ g +1 , ,

I15; +<P(X,11)— 2 L] d11 11>(X111) (2-73)

with boundary conditions

<1>(11,—11)=<1>(—a,11)=0, 116ml]

Suppose we decompose

+1 1

x = d x, = d x, + x,—

<I>() Ll 11<1>( 11) [0 11[<1>( 11) <1>( 11)]

Then if we integrate the transport equation (2.73) over space, we find

=L ’‘ I I—rx—x'mi

1111.1) 2“ [qdx 1(x)e (2.14)

_ _-_i a I 1 -(X’—X)/11

1o. 1) ,“fx 11x <1<x>e (215)

But we can regard equations (2.74) and (2.75) as defining an integral

transform pair. If we now insert Eq. 2.74 into Eq. 2.75 and integrate over

x, we find an integral equation

+ldv (P(x,|’)_I“P(X,I-l)

—l

C

<P(x111)=5 PM

+3 1d 11¢(X,11)+P<P(X,—v)—v¢XP[—(a+X)/11]

21;) V 11+”

or collecting terms,

c H v x,v c _n x l mp(a,v)

*(1*)‘P(x’1‘)=2”f_, d”%-,T)'2@ ‘i “T, @Tt

(2.76)
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122 1:] EXACT SOLUTIONS

But we recognize this as a singular integral equation of the Cauchy type,

very similar to those we encountered in the half-range completeness

proofs. (In a sense, Eq. 2.76 turns out to be adjoint to the singular integral

equation we solved earlier.) The same techniques (i.e., reduction to an

inhomogeneous Hilbert problem in complex variables) can be used to solve

Eq. 2.76 for (p(a,p.), and this form can be inserted into Eq. 2.77 to find

q)(x,11.). Very similar techniques can be used to solve transport problems in

periodic geometries (e.g., one-dimensional lattices).

Multidimensional Transport Problems [1 Both the integral transform

(Wiener-Hopf) and singular eigenfunction methods are essentially re-

stricted to one-dimensional boundary value problems in transport theory.

Although there have been many attempts to extend these methods to two-

and three-dimensional problems (e.g., the “corner” Milne problem), these

extensions have usually encountered extreme mathematical complexity and

have met with only marginal success.“

Consider, for example, the application of a two-dimensional Fourier

transform that results in a transformed flux <-i>(kx,ky), which is defined in

the neighborhood of the real kx and ky axes. We can analytically continue

the integral definition of ¢(kx,ky) as four components, analytic in the

upper-upper kx—ky planes, upper-lower kx—k), planes, and so on. Hence it is

apparent that we must solve one functional equation for four unknowns

¢+ +, o, _, 4>_ +, and ¢_ _ using the analogue to the Wiener-Hopf decom-

position (known as the Bochner theorem).55 But an explicit scheme for

constructing this decomposition is not yet available.

Singular eigenfunction methods have fared no better. Indeed, even the

determination of the singular eigenfunctions56 is a far from trivial task—

much less their application to solve actual multidimensional boundary

value problems. Therefore we must conclude that the solution of even

simple modeled transport problems in more than one space dimension is

beyond the capability of existing methods of analysis.

There has been limited success in studying boundary value problems in

which the additional dimensions are treated in an asymptotic sense. In

these schemes one seeks to represent the angular flux in the form

q>(x,y,z. 9) = @(2. Q)e“”x"e"%y

where the parameters B, and By that characterize the transverse directions

are regarded as real, fixed parameters. One then arrives at an effectively

one-dimensional problem (dependent on the parameters B, and By) that

can be solved using the usual integral transform or singular eigenfunction

methods.
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TIME-DEPENDENT PROBLEMS IN TRANSPORT THEORY 1:1 123

2.3 [I TIME-DEPENDENT PROBLEMS IN TRANSPORT THEORY

D In principle at least, one can easily extend either integral transform or

singular eigenfunction methods to the analysis of time-dependent problems

in one-speed transport theory. We illustrate with an initial value problem

involving the time-dependent, one-speed transport equation characterizing

a slab of width a:

121 a -22 I

v t-l-“ax +Et(p(x’p"t)_ 2 jll df"(p(x,f1'rt)

with boundary conditions

<P(0,11,t)=0=<1>(a, “1H), 11>‘)

and initial condition

when, 0) = %(X,n)

We begin by taking a Laplace transform in time

~ w _ I

(P(xrfl"s)=f die "P061110

0

to find the transformed transport equation

E+(Z‘.+i)'(x s)=c—2'f+1d"(x s)+l (x )

Fax 1 v (p r“, 2 _I “(p if‘, 0% if‘

But this can be identified as just a steady-state problem with a “complex”

mean free path or cross section 2,+s/v=(mfp)_'. Hence we can apply

the usual integral transform or eigenfunction expansion methods to solve

this effectively one-speed, time-independent problem (treating s as an

arbitrary complex parameter). But of course the most difficult task follows,

when the Laplace-transformed solution must be inverted.

A variety of half-space problems have been approached in this manner.

Kuscer and Zweifels7 analyzed the time-dependent albedo problem in

which a beam of particles is reflected off a half-space. A similar problem

with two adjacent half-spaces was studied by Erdmann and Lurie.58

Perhaps the most elegant work has been Bowden’s solution59 of the

time-dependent slab problem. As a general rule, any stationary problem

that can be solved with one-speed transport theory can also be solved as a

time-dependent problem, if one has enough patience (tedious, but

straightforward).
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124 1:1 EXACT SOLUTIONS

Although the detailed mathematical manipulation involved in solving

such time-dependent boundary value problems can become rather ugly,

some rather amusing physics that occurs in such problems can be

illustrated by solving a somewhat simpler problem. Consider the initial

value problem for the transport equation in which we specify the spatial

dependence of the flux by assuming a form:

v(x, 11’ t) = <r>( 11, 06"" (277)

where B is a fixed parameter. For example, if Eq. 2.77 is used to simulate

the fundamental spatial mode of a slab geometry, we would choose

B = a / a. Substituting this form into the transport equation, we find, after

taking a Laplace transform,

_ s _ _cE, +1 ,_ , l

('Bri+E,+;)<P(ri.s)——2—f_l dri v(ri,s)+ 3%(10 (2-78)

where ipo( u) is the initial value of the flux [also assumed to be of the form

exp(iBx)]. We can now solve Eq. 2.78 in the usual way for

fHd“ @001)

~ + _ i3 2, s _

¢(s)=f_lid,,¢(,,,s)= 612' (HM tip/v) (2.79)

l_Tf_| iBu+E,+s/o

Here we have explicitly indicated that this solution depends on the value B

chosen to characterize the spatial dependence. We can now attempt the

inversion of the Laplace transform

_L We .,x(B,s)

W) 2ml,_,-,, “"3 A(B,s)

by studying the analytic structure of the transformed flux given by Eq.

2.79.

We begin by noting the presence of branch point singularities at s=

—oZ,:iBv. If we note the integration over it that gives rise to these

singularities, it is apparent that we must draw in the branch cut as shown

in Figure 2.26.

The poles of the transformed flux will correspond to zeros of A(B,s):

CE, +1 d”,

= _ _—=() 2.80

A(B’S) l 2 L1 iBp.+Z,+s/v ( )
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s— Plane

—vZ, + 1811

_)\o

—vE, — t'Bv

Fig. 2.26 1] Laplace transform s-plane structure.

Notice here that these zeros will depend on the parameter B. A relation-

ship such as Eq. 2.80, which gives the characteristic “frequencies” of a

process, s0(B), in terms of the “wave number” B is referred to as a

dispersion law or dispersion relation.60

But how many zeros does A(B,s) have? A clue is provided by the case

B=0, for then

c2

_ ———'—= =— —

A(0,s)—l 2'+s/v 0=>s0 (l c)vZ,

One can easily demonstrate that for B >0, there continues to be only one

zero, which we label as so= —}\0(B). It can also be shown that this zero is

real and is located on the negative real axis — v2, < —>\O(B)< 00.

Therefore we expect a general solution of the form

¢(l) = doe—Ad + e_>‘"fuBd}\A(B,}\) sinht

o

where we have introduced the definition A‘ Ev2,. In particular, for large t

[more precisely, for t>>(v2,)_ l], we find the expected exponential behavior

¢(t)~aoe_"°‘, t>>}\"'l

But something rather interesting can occur here. We recall that the

exponential decay constant }\O(B) depends on the parameter B which, in

turn, characterizes the size of the system (e.g., the width of the slab). If we
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126 El IDIACT SOLUTIONS

were to make the system smaller, B would increase and 110(3) would

change. It can be demonstrated that 210(8) is a monotonically increasing

function of B (actually, of B2) as Figure 2.27 illustrates. But what happens

if we make the system sufficiently small that we drive 210(8) to A‘ [i.e., we

push the pole -—}\O(B) over to the out]? If we note that

"l d!‘ __l —l ___B Z Z

f_| iBp.+Z,+s/o_13tan (E,+s/o)<B(2)

then it is apparent that the dispersion law (2.80) will have no zeros for

B>B*EcE,w/2. That is, for B>B‘, there will be no pole; therefore,

apparently, the time behavior of the flux will assume the form

4,(,): e—m f0 "Barman 51112.1, B >1?

That is, if we make the system too small, we will not observe an exponen-

tial time decay asymptotically for large times; the flux will never fall into

an asymptotic form; the transport transients will never disappear.

This is a rather amusing result. It seems to imply that at some magic

value of system size corresponding to B = B“, the time behavior of the flux

will change dramatically. But this interpretation is not quite true. For only

the mathematical representation of the flux changes. The pole s0= —>\0 is

still there if we look hard enough, but it has moved onto another branch of

the log function—onto another Riemann sheet.“62 To track it down for

B >8“, we must analytically continue the dispersion law onto the next

roar)

)p _ _ _ _ _ _ _ _ _ _ ____.

(1 —c)vZ,

.

|

l

I

l

l

l

I

|

l

l

B

Fig. 2.27 1:] Behavior of AO(B) for increasing B.
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Riemann sheet by using as an analytic continuation

_ c2, +1 dp.

A(B,s)—l 2iB _1 (02,+s)+

iBo H

02, +1 dp. cE, ,_

*1 2m _1 (02,+s)+ fi(2m)=1\..(B,s)

iBv '1'

Then we find that as B exceeds B“, the discrete pole moves across the cut

onto the next sheet, where it bifurcates into two complex conjugate poles

of the analytically continued dispersion law Aac(B, s) (see Figure 2.28). We

can pick up the contribution from the analytic continuation of the pole by

appropriate deformation of the Laplace inversion contour as sketched in

Figure 2.29. We then find that the form taken by the time dependent flux

for B >B“ is

¢(t) = aoexpl: — Re{710}t]sin[1m{}\0}t]+ [M] 0° dlt A(h) sinht

— 00

For intermediate times, ¢(t) assumes a “quasi-exponential” behavior

¢(t)~a0exp[ —- Re{7\0} t]

Only for very long times is the nonexponential behavior of 0(exp(—l\*t))

from the tip of the branch cut dominant.

s — Plane .r — Plane

(B < B") (B > B’)

2

E

(a) (b)

Fig. 2.28 El Trajectory of pole A°(B) onto adjacent Riemann sheet for B >B‘.

(a) Physical sheet for B <B“. (b) Analytical continuation for B >B'.
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‘ S ‘" mane s — Plane

(B > B’)

T I’_\

l l l

j L1

(:1) (17)

|

s — Plane Y s — Plane

/*\l.-) x 7k.)

[ ‘ff/‘l ‘i’ l

l 1

a 1 |

l ’ \ ~

\ l\ /i l

\ I 4\ \,_, <

\.__,I\ 2 \

|

i

(C) I (d)

Fig. 2.29 [I Contour deformation to pick up contribution from analytically

continued poles for B >B‘. (a) Original Bromwich contour. (b) Deformation about

branch cut. (c) Deformation onto adjacent Riemann sheet. (D) Contribution from

analytical continuation of A0(B).

As the system size becomes smaller and B>>B"‘ becomes larger, the

amplitude of the coefficient a0 becomes smaller and the strength of this

quasi-exponential behavior decreases. That is, although there is no sudden

change in the nature of the time dependence of the flux for B >B", the

exponential mode will gradually “fade out” if we make B large enough

(i.e., the system small enough).

Of course this analysis is based on a very simple model of the spatial

dependence of the flux which assumed a constant spatial shape of the form

exp(iBx). However the essential features of this problem remain when a
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SOME FINAL COMMENTS [:1 129

more accurate treatment of spatial dependence is given, although there are

some notable exceptions. For example, in “infinite” geometries such as

slabs or infinite cylinders, one finds that there will always be a discrete

decay constant A0 regardless of the size of the system.”*63 By way of

contrast, in finite geometries such as spheres or cubes, this discrete decay

constant will disappear for sufficiently small systems.“ This disappearance

of the decay constant also occurs when the one-speed approximation is

removed and a more rigorous treatment of the particle energy dependence

is included, as Chapter 5 demonstrates.

It should also be noted that the disappearance of decay constants—that

is, roots of the dispersion law—for certain limiting values of parameters,

arises in other situations as well. For example, if we investigate the

response of the angular flux to an oscillating source of the form Soexp

(— lot) by seeking solutions to the transport equation of the form

<P(X, u, t)~<i>( Me‘U‘X‘“)

it is apparent that the spatial relaxation parameters that govern the

asymptotic decay of the flux far away from the source will be determined

by a dispersion law of the form

_ _ L21 “L _

A(k"")'1 2ik _, ikjt+2,—iw/0 ‘0

But once again we find that the asymptotic relaxation constant k0(w)

depends on a parameter, this time the source frequency (0. And once again

it can be shown that for sufficiently large frequencies, this root “runs into a

branch cut” and disappears.6H7 Then it must be tracked down, using

analytic continuation, as we illustrated for the time relaxation problem.

We consider such asymptotic relaxation phenomena in much greater

detail in Chapter 5, noting that the relaxation parameters (A0 or k0) can be

identified as the fundamental eigenvalues of the appropriate form of the

transport operator. In this sense, they play an extremely important role in

transport theory.

2.4 1] SOME FINAL COMMENTS ON METHODS FOR SOLVING

THE ONE-SPEED TRANSPORT EQUATION El It should be appar-

ent that there are very few instances in which an analytical solution of the

transport equation can be obtained. Even under the most drastic modeling

assumptions (e.g., one-speed, isotropic scattering, and one-dimensional

symmetry), the direct solution of boundary value problems in transport

theory is extremely cumbersome. It is not surprising that the difficulty in
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130 El EXACT SOLUTIONS

solving even the simplest transport problems, and the hideous complexity

of the solutions that have been obtained, have effectively limited the

usefulness of these results in the analysis of the more realistic problems

that arise in practical studies of transport processes. Indeed, one is quite

justified in questioning the rationale behind generating incredibly com-

plicated closed-form solutions to oversimplified problems in preference to

far more direct (and transparent) numerical solutions.

Thus the discipline of “analytical” transport theory (i.e., attempts to

obtain analytical solutions to drastically simplified or modeled problems)

has become effectively divorced from the “real world” of transport phe-

nomena and has turned inward, evolving into essentially a branch of

applied mathematics.68 Of particular concern has been the subdiscipline of

“rigorous transport theory” in which efforts are made to provide the

mathematical foundation and justification for such ad hoc approaches as

the singular eigenfunction method. And there has always been the underly-

ing hope that such fundamental mathematical studies would lead to the

development of methods capable of solving new types of boundary value

problem in transport theory.

An excellent case in point is the resolvent integration technique devel-

oped by Larsen and Habetler.“ By adapting this well-known method70

from the theory of boundary value problems in partial differential equa-

tions, it has been possible to derive the singular eigenfunction expansion

directly. To be more specific, consider our old friend, the one-speed

transport equation, under the usual assumptions (and in the usual nota-

tion):

atp _ c +l I /

11 ax +<P(x,11)— 2 L1 du <1>(x.#)+s(x.11)

First, let us manipulate this into a “separation of variables”-like form

all’ i _L *1 » '__s(x,#)

ax + H jl] (p(x’f‘l')_ H

We denote the angular operator by K '1

1 c +1

K _' E — — — d ’ x, '

‘P Ft? ML] 1H1>( 11)

One can easily construct the inverse K as

c I I I

K<P-1"P+2—(l—_T)f_l dtl WPUL)
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SOME FINAL COMMENTS El 131

Since K is a bounded integral operator, we can apply well-known results

from functional analysis to study the eigenvalue spectrum of K. (Here we

must use concepts developed more fully in Chapter 5 and Appendix E.) To

this end, we explicitly construct the resolvent operator corresponding to K

_ _] _ I _ C +1 ,M

(11 K) <P(ri)—z_“[<r>(ri) 2Mz)f_ldri liq]

From the known behavior of A(z), we can identify the eigenvalue spectrum

of K as follows:

Point spectrum ap(K): + v0, — 110 [A( i we) =0]

Continuous spectrum 06(K): vE[— 1, +1]

Residual spectrum o,(K): Q

With this knowledge, we can construct the spectral representation (i.e., the

eigenfunction expansion) of an arbitrary function <p( u) by using the

identity

v(rL)=LS6C(ZI—K)_'rp(ri)dz

2111'

where the contour C encloses the spectrum of K (see Figure 2.30).

One can deform the contour to explicitly evaluate the integral and find

a t>=ao.ro.<r)+ao_ro_<r)+ fl‘dmoix 11)

Fig. 2.30 1] Integration contour for resolvent operator.
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132 1:1 EXACT SOLUTIONS

where {lilotfllly} are the usual singular eigenfunctions and a0:,A(v) are the

appropriate (full-range) expansion coefficients.

In this manner Larsen and Habetler have been able to use standard

tools from functional analysis to justify the more ad hoc approach taken

by Case. A similar analysis can be given for half-range boundary value

problems.

By providing the bridge between the singular eigenfunction method and

the more familiar (and rigorous) methods of functional analysis, Larsen

and Habetler69 stimulated a flurry of activity aimed at “rigorizing” the

mathematical methods used to solve transport problems.71 But more signi-

ficantly, since the resolvent integration approach actually constructs the

spectral representation for the boundary value problem of interest, there

was great hope that this method could be used to solve more general

problems such as the energy-dependent (more specifically, the multigroup)

transport equation.72 We discuss these developments in Chapter 5.

The study of the mathematical foundations of the transport equation has

continued with the work of Hangelbroek.73 By viewing the transport

equation as a first-order linear differential equation in the spatial variable

x, Hangelbroek was able to transform this equation into a new form using

the theory of holomorphic semigroups of operators. He identified Case’s

singular eigenfunctions as corresponding to certain functionals on sub-

spaces of the Hilbert space of square-integrable functions of a. This

particular approach is considerably more formal than the resolvent integra-

tion method of Larsen and Habetler (and it is steeped in far more abstract

mathematics). It has seen only limited application to date, by those seeking

actual solutions to boundary value problems in transport theory (as

opposed to those interested in studying the properties of the transport

equation itself).

The redirection of the mathematical study of transport theory from the

solution of specific boundary value problems (no matter how simplified) to

more rigorous studies of the mathematical foundations of the transport

equation, is certainly understandable. Even the development of newer

methods such as the singular eigenfunction approach has not appreciably

enlarged the class of solvable problems in transport theory beyond those

that were (or could be) solved using the more classical integral transform

methods. Furthermore, the development of powerful numerical methods

for solving the transport equation for problems of more practical interest

has largely eliminated the need for such analytical methods for all but

pedagogical purposes. Therefore it is natural that the subject of mathemati-

cal transport theory has drifted away from the study of the physics of

transport phenomena and has attempted to establish itself as a distinct

discipline in applied mathematics.
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E] PROBLEMS E]

2.1 An isotropic point source is emitting S0 monoenergetic particles per

second in an infinite medium. Assume that the medium is characterized by

an absorption cross section 2,, but only by negligible scattering. Determine

the rate at which particle absorptions occur per unit volume at any point

in the medium.

2.2 Consider a sphere of radius a in a vacuum. On the surface of the

sphere the angular flux is isotropic and constant [i.e., (p(r=a,p.)=C].

Determine the angle-integrated flux ¢(r) and examine its behavior for large

Ir] / a. (For simplicity, assume that the interior of the sphere is a “black”

absorber so that no particles can penetrate through the sphere.)

2.3 Determine the flux ¢(r) at any position within a spherical shell of

radius R if the angular density on the surface of the shell is given by

(p(R, ,u.)=¢o(l + up). In particular, comment on your answer for a <0,a =0,

and a >0. Assume that the interior of the shell is a vacuum.

2.4 Consider an isotropic source distributed uniformly throughout a half-

space that is purely absorbing. Determine the angular flux and current at

the surface of the medium.

2.5 In a laser-induced thermonuclear fusion reaction, a tiny pellet is

imploded to superhigh densities such that it ignites in a thermonuclear

burn. In such a reaction some 10‘7 14 MeV neutrons will be emitted

essentially instantaneously (within 10— " sec). Compute the neutron flux at

a distance of one meter from the reaction as a function of time (assume

that the chamber in which the reaction occurs is evacuated).

2.6 Explicitly take the t-+oo limit of the general solution to the time-de-

pendent transport equation in purely absorbing media and demonstrate its

equivalence to the steady-state result.

2.7 Derive the first-flight kernel for an isotropic line source.

2.8 Demonstrate that the average chord length characterizing a nonreen-

trant geometry is given by <R>=4 V/ S. (The reader might find it useful

to refer to References 2, 5, or 7.)

2.9 Demonstrate that the first-flight escape probability for a nonreentrant

volume can be written in the form given by Eq. 2.28. Use this expression to

demonstrate that the first-flight escape probability characterizing a large

lump is given by P0= S/4 V2,.

2.10 Derive the relation between point source and plane source solutions

to the transport equation given on page 83.

2.11 Determine the escape probability P0 for a slab of thickness L using

the Dirac chord method.
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134 [:1 EXACT SOLUTIONS

2.12 Demonstrate that the one-speed, time-independent transport equation

in plane geometry takes the form given in Table 2.2 even for space-depen-

dent cross sections, 2,=E,(x), if one introduces the variable transforma-

tion to the optical depth, 'r(x)= f dx2,(x).

0

2.13 Verify the bound "K" < (cE,l) for the integral transport operator K

defined in Eq. 2.37.

2.14 Weinberg and Wigner" state that there is no closed-form expression

for the spatial relaxation constant 1:051:0— ‘ of the one-speed transport

equation. However Mclnerney75 has derived just such an expression. To

provide a review in complex variable theory, it is a useful exercise to derive

this expression for no as follows:

i Define a function

cz z+l

A(z)_1-71n(z_l)

which is analytic in the z-plane cut from [— 1, +1]. Determine the

limiting values as 2 approaches a value v on the cut from above and

below for v6[— 1, +1].

ii Use Cauchy’s theorem to show that

—1__£ +1 vg(c,v) 1 _ 2V0

[A(z)] _ 2 ~1dy V—Z +l—c K(z2_v(l)

2 —1

g(¢',l’)E[(l—cvtanh_'v)2+c_27;i

K: v3(l—c)—l

— "003-1)

iii Find a similar formula for z2/A(z).

iv Use these results to find

y(2)= fi—(1—c)_£)ld1w2g(c,v)][l—(l—c)£)ld1’8(ci")]—I

2.15 Prove that A(z)=l—(cz/2)ln(z+1)/(z—l) has two zeros, two.

Hint. Apply the principle of the argument74 to A(z) using the contour

indicated in Figure 2.31.
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z—Plane __ _
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Fig. 2.31 [1 Integration contour for application of the principle of the argument

to A(z).

2.16 Obtain an expansion for no for the case of (l — c)<< l.

2.17 State the identity theorem for analytic functions and indicate how it

can be used to analytically continue the definition of the Fourier transform

off of the real k-axis and into the complex k-plane. (See Knopp6l or

Copson.2°)

2.18 Solve the one-speed transport equation for the flux ¢(r) resulting from

an isotropic point source at the origin of an infinite medium. (Essentially,

imitate the Fourier transform analysis of the plane source problem.)

2.19 Calculate the limits of the point source and plane source solutions as

c—>l. (The plane source limit is somewhat tricky.)

2.20 Consider a directed beam of particles in an isotropically scattering

and absorbing infinite medium. Determine the total flux by first comput-

ing the distribution of first collisions, then treating each of these as an

isotropic point source.

2.21 Modify the usual convolution theorem from the theory of integral

transforms to find

6.1{fo°°dyK(x—y>¢<y>} =1?<k>¢.(k)

where 0' denotes the Fourier transform, 1? E 6} {K }, and 15+ is the positive

“one-sided” Fourier transform.
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2.22 Use the integral transport equation to demonstrate that 4>(x)~

0(exp(2,x)) as x—> — oo in the Milne problem.

2.23 Solve the Fredholm integral equation

w

<p(x)=>\f dyer—My)

0

for A real. Consider only solutions for which |(p(x)| <Ae""‘ for x>0, for

some A>0, m< l.

2.24 Discuss in a general fashion the construction of solutions to in-

tegral equations of the following types:

i g(x)= [0 am —y><p(y>. x >0

w (Fredholm equation of the first kind)

ii ¢(x)=g(x)+ f0 aux—mo). x >0

(F redholm equation of the sec-

ond kind)

where g(x) and k(x) are given for x>0 and —00 <x< oo, respec-

tively, and q>( y) is unknown.

2.25 Demonstrate that the one-speed transport equation characterizing a

uniform medium is invariant under spatial translation.

2.26 Compare the definition of the Holder condition with the more

familiar Lipschitz condition encountered in differential calculus.

2.27 Derive the normalization N(v) for the singular eigenfunctions. You

will need to employ the Poincare-Bertrand formula:42

$0M) _ l <P(t,'1)

Ldll Ldlml—O—'ll’2tp(lo,lo)+j;dlmfldllm

2.28 Prove that

l .

PLdzz_V—'m, VEC

where C is any closed contour of “sufficient” smoothness in the z-plane

(see Figure 2.32).

2.29 Using the explicit forms given for uni, A(v), and 41,,(11) for the

problem of a plane source at the origin of an infinite medium, demonstrate

that the solution obtained by the singular eigenfunction method is identical

to that obtained using Fourier transform techniques.
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z —Plane V

Fig. 2.32 [:1 A closed contour C

characterizing the integral in Prob-

lem 2.28.

2.30 To prove the completeness property of the singular eigenfunctions,

we explicitly demonstrated the existence (by construction) of the solution

to the singular integral equation that arose for the expansion coefficient

A(v). But how can we assure ourselves that the form we derived for A(v) is

unique?

2.31 Suggest the form that a “closure” relation for the singular eigenfunc-

tions might take. Sketch how you might go about proving this relation.

(Refer to the work of Kuscer and Shure“3 if necessary.)

2.32 Determine the flux resulting from an isotropic source located at the

interface between two adjacent dissimilar materials of infinite extent (the

“two adjacent half-space problem”). Refer to Case and Zweifel28 for the

appropriate half-range orthogonality relations.

2.33 Sketch how you would apply the methods of Muskhelishvili42 to solve

the singular integral equation that results from the Laplace transform

approach to the Milne problem.

2.34 Determine the Green’s function for an isotropic source at a position

x0 in a semi-infinite medium.

2.35 Calculate the emerging angular distribution for the case of a uniform

source in a semi-infinite medium.

2.36 Prove that Aac(z) is indeed the analytic continuation of A(z) onto the

adjacent Riemann sheet of A(z).

2.37 Demonstrate that the analytic continuation of }\O(B) for B >B*

cannot be real.

2.38 Consider the “forced wave propagation” problem in which one

studies the angular flux 1p(x, )1, t) established by an oscillating plane source
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EXACT SOLUTIONS

of the form Sue—1°’ located at the origin of an infinite medium. Demon-

strate that above some critical source frequency, or‘, plane wave solutions

of the form <p(x,p.,t)~<p( p.)e"('“_“") will not propagate [i.e., prove that the

dispersion law A(k,w) has no zeros for w>w‘].

2.39 Derive the form given for the operator K in the resolvent integration

method.

12.

13.

14.

15.

16.

17.

18.

19.
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U31]

Collision Phenomena

in Particle Transport

In our preliminary discussion of Chapter 1, we indicated that the transport

equation describing the particle phase space density n(r, v, t) could be

written in the general form

an an F an an

5+‘, 5+; w—(Eloll

where (fin/8t)coll represents the change in n(r, v, t) due to collision or

interaction processes. The specific form taken by the collision term de-

pends sensitively on the type of particle transport of interest. We have

already provided examples of the form taken by this term for several

important processes including neutron, photon, and charged particle trans-

port, and gas and plasma dynamics. We now turn to a more detailed study

of the mathematical description of collision events characterizing various

transport processes.

First, note that the form of Eq. 3.1 is quite general and exact~provided,

of course, that the particles under investigation can be described as distinct

point particles and do not exhibit wave properties. The streaming term

(in/at+v~(8n/6r)+(F/m)-(8n/8v) can be derived easily from the micro-

scopic equations of motion for the particles (e.g., Hamilton’s equations or

the Liouville equation). However one is usually forced to introduce ap-

proximations in the treatment of collision processes to arrive at an explicit

form for the collision term (an/80w" that is amenable to mathematical

treatment.

To the extent that transport theory is concerned with the mathematical

study of transport equations, it would be appropriate to merely assume

that the detailed form of the collision term is given to us as a result of the

considerable labor of the physicist concerned with microscopic collision

processes. In this sense then, transport theory would be concerned with the

mathematical study of particle transport phenomena involving multiple

collision events in which the result of a single collision event is assumed to

be known.l However as subsequent chapters reveal, the mathematical tools

appropriate for the study of particle transport depend sensitively on the

form taken by (an/80cc“; therefore it is necessary to summarize at least the
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142 1:] COLLISION PHENOMENA IN PARTICLE TRANSPORT

properties of this term for various types of particle transport.

We will find it useful to distinguish between two different classes of

transport process: random walk or self-diffusion processes, and collective

or cooperative processes. In random walk or self-diffusion processes the

particles of interest diffuse through a host or background medium, inter-

acting randomly by way of collisions with the microscopic structure of the

medium. Examples include the diffusion of neutrons through matter, in

which the neutrons interact with the nuclear composition of the host

material; the penetration of light through an atmosphere, which involves

the interaction of photons with gas atoms or molecules; the transmission of

gamma radiation through a shield; and the diffusion of a low density gas

through a higher density background gas. A conceptually somewhat diffe-

rent (but mathematically identical) problem concerns the diffusion of a

tagged or “test” particle through a medium of identical particles—for

example, self-diffusion in gases or plasmas (see Figure 3.1).2’3

Such random walk processes are generally described by linear collision

terms; therefore they can be studied readily using the techniques of

classical linear mathematical analysis. The assumption of linearity can

occasionally become invalid, however. For example, if the density of the

test particles becomes too high (e.g., comparable to that of the host), one

must also consider interactions among the test particles, and the process

becomes a collective phenomenon that must be described by a nonlinear

transport equation. This situation is rarely of concern in most of the

processes we characterize by linear transport equations. For example, in a

nuclear reactor, the typical neutron and nuclei densities are 101° and

1022 cm“, respectively.

A somewhat more significant source of nonlinearity arises if the diffus-

ing particles can perturb the host material and thereby influence the

probability of an interaction event. In this case the cross sections become

functionals of the phase space density n(r,v, t). One example is the temper-

ature changes due to fission heat as neutrons diffuse through a multiplying

medium. Another is the deposition of photon energy in a stellar atmo-

sphere.

By way of contrast, in collective phenomena the particles of interest

diffuse and interact among themselves. Examples here include molecular

gas dynamics‘ and plasma dynamics.5 Since the interaction rate clearly

depends on the probability that two (or several) particles will find them-

selves within the interaction force range, it is not surprising that such _

collective processes usually must be described by collision terms that are

nonlinear in the phase space density n(r, v, t).

We distinguish in our mathematical studies between such self-diffusion

and collective interaction processes. It is convenient to ignore the effects of

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y
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O

O 000000 00

(b)

Fig. 3.1 [1 Random walk (self-diffusion) processes (a) versus collective trans-

port processes (b).

the diffusing particles on the host medium, permitting us to describe

self-diffusion as a linear transport process. In general, collective processes

must be described by nonlinear transport equations—although in the

specific instance of small disturbances from thermodynamic equilibrium

we can approximately linearize these equations.

There are other more subtle differences between self-diffusion and

collective processes. Since the transport equation describing self-diffusion

does not explicitly describe the effect of the test particle on the host
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144 U COLLISION PHENOMENA IN PARTICLE TRANSPORT

Table 3.1 [1 Characteristics of Self-Diffusion Versus Collective Transport

Processes.

Self-Diffusion Collective

Examples Neutron, photon, electron Gas dynamics, plasma

transport dynamics

Mathematical character Linear Nonlinear

Continuum limit Diffusion equation Hydrodynamics equations

Continuum process Particle diffusion Sound propagation, heat

conduction, convection

plasma waves

medium (e.g., recoil effects), it will only conserve particle number in

general, not the test particle momentum or energy. On the other hand, the

more complete picture of collision events provided in descriptions of

collective phenomena will lead to conservation of the macroscopic coun-

terpart of any microscopic parameter that is a constant of the motion in a

collision event (e.g., mass, momentum, or energy). This distinction between

the conserved variables in each type of process will lead to dramatically

different continuum descriptions of the particle transport. For example, the

transport equation characterizing self-diffusion processes reduces in the

continuum limit to the well-known diffusion equation (e.g., the neutron

transport equation can be approximated by the neutron diffusion equa-

tion). Yet transport equations describing collective motions lead in the

continuum limit to the equations of hydrodynamics—which are macro-

scopic manifestations of the conservation laws applying to an individual

collision process. These distinctions between self-diffusion and collective

processes are summarized in Table 3.1. This chapter sketches the deriva-

tion and presents the properties of the collision terms corresponding to

both types of transport process.

3.1 E] LINEAR COLLISION OPERATORS E1 We first examine linear

collision operators that characterize random walk or self-diffusion

processes in which the interaction mean free path or macroscopic cross

section is independent of the phase space density. Transport equations

characterizing such processes are sometimes referred to as equations of the

Lorentz-Boltzmann type“ and include the neutron, electron, and photon

transport equations as well as test particle equations in gas or plasma

dynamics.
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LINEAR COLLISION OPERATORS [:1 145

3.1.1 [1 Neutron Transport II] We have previously developed the colli-

sion term in the neutron transport equation essentially by definition. That

is, we defined the concept of macroscopic cross sections that characterize

the probability of occurrence of a given type of neutron interaction. These

allow us to write

= —vE,(r,v)n(r,v,t)+fd3o'o'Es(r,v’—>v)n(r,v’,t)

at coll

Essentially, we assume that these cross sections are given to us by the

nuclear, solid, or liquid state physicist, and concern ourselves more directly

with the solution of the neutron transport equation. Nevertheless it is

useful to review briefly the principal ingredients of the theory of neutron

cross sections to identify the general mathematical properties that are

relevant to transport theory.

Of course all macroscopic cross sections can be written in terms of

microscopic cross sections, which characterize individual neutron-nuclear

encounters:

2(r, v) = N (r)o(v)

(Here a may occasionally be interpreted as a microscopic cross section that

has been averaged over a distribution of nuclear speeds.) The behavior of

these cross sections depends quite sensitively on the neutron kinetic

energy. It is convenient to divide the neutron energy range into three

different energy regions (see Figure 3.2), each of which is characterized by

Fission sources

Resonance absorption inelastic scattering

Elastic scattering Elastic scattering

Isotropic in center of Anisotropic in center

Chemical binding mass system of mass system

Crystalline effects Free scatterers Free scatterers

Upscattering No upscattering No upscattering

0 1 eV lOSeV 107eV

\ 1 \ / \ 1

V V V

Neutron thermalization Neutron slowing down Fast neutron transport

Fig. 3.2 [I The energy regions characterizing neutron transport.
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146 I] COLLISION PHENOMENA IN PARTICLE TRANSPORT

a collision term with somewhat different mathematical properties. For

neutron energies far in excess of the thermal energies of the nuclei in the

host material, one can essentially treat the nuclei as if they were initially at

rest and free to recoil (and ignore upscattering and chemical binding

effects). The determination of the corresponding macroscopic cross sec-

tions becomes a simple problem in two-body kinematics if one assumes

that the microscopic cross sections characterizing interactions with a single

nucleus are known. Of course, the detailed interaction dynamics between a

neutron and a nucleus can be quite complicated and gives rise to a variety

of nuclear reactions including simple scattering (potential scattering), reso-

nance scattering (both elastic and inelastic), radiative capture, and nuclear

fission. Since the probability of a given reaction occurring will increase

significantly if the incident neutron kinetic energy happens to “match” one

of the energy levels of the target nucleus (or more precisely, the compound

nucleus formed by absorption of the neutron), the cross sections char-

acterizing neutron-nuclear interactions will exhibit a very complicated

resonance behavior as a function of incident neutron kinetic energy.

For lower neutron energies, both nuclear motion and chemical binding

effects must be included. Since these “thermal” neutron cross sections

contain fast neutron cross sections as a limiting case for large neutron

energies, we briefly summarize the theory and properties of thermal

neutron cross sections.

Thermal Neutron Cross Sections 1] To analyze the transport of low en-

ergy (E < leV) neutrons, we require information concerning both the

scattering kernel E,(v'—>v) and the total macroscopic cross section E,(v)=

2,,(0) + 28(0). There is a vast literature‘H2 available on the calculation and

measurement of thermal neutron cross sections, since they play a central

role in the interpretation of neutron spectroscopic data by allowing in-

vestigators to infer information about the microscopic structure and dy-

namics of matter (inelastic neutron scattering and neutron diffraction

studies). Within the context of the Born approximation and the Fermi

pseudopotential model, Van Hovel2 has shown that the thermal neutron

scattering kernel can be written as the sum of two components

E_,(E'—)E, = N0[ ocoh(E'—>E, + oinc(E'—>E,

where

A A l/2 .

ocoh(E'—>E,fl'—>Q) = #04?) (217B)—|fd3rfdte‘(""—“")G(l',t)

E

I A r A 2 l/z - 1 3 i(|:~|'—wt)

oinc(E ->E,SZ —>fl)=ainc( E,) (21th) fd rfdte Gs(r,t)
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LINEAR COLLISION OPERATORS El 147

Here acoh and ainc are the coherent and incoherent nuclear scattering

lengths, |c=(p'—p)/h is the neutron momentum change or transfer, and

hw=(E’—E) is the neutron kinetic energy change in the collision. The

time correlation functions G(r, t) and G,(r, t) are defined by:

G(r,t)= N0— 1 <8(x—x,-(0))8(x—xj(t))>, rEx—x’

Gd’, t) = No_ I <5(X_X.-(O))8(X-Xr(l))>

Several comments are appropriate here. First, these expressions indicate

that a thermal neutron scatters from an aggregate of nuclei, not just

individual scatterers. Hence the concept of a microscopic cross section

characterizing an interaction event with a single nucleus is no longer

strictly relevant. Furthermore the cross section 2, depends on the product

of two factors: nuclear force laws times motion of scattering nuclei. This

separation is a consequence of the use of the Fermi pseudopotential model.

The calculation of the nuclear scattering lengths aooh and ainc is left to the

nuclear physicist. The calculation of the dynamics of the scattering nuclei

is a very fascinating problem in nonequilibrium statistical mechanics.

The Van Hove time correlation functions G(r, t) and G,(r, t) have an

extremely interesting classical interpretation:

G,(r,t)d3 = probability that if a nucleus is at the

origin at t=0, then the same nucleus is

found at position r in d3r at time t

G(r,t)d3 = probability that if a nucleus is at the

origin at t=0, then any nucleus is found

at position r in dsr at time t

This interpretation is the basis for using neutron inelastic scattering as a

tool to study the microscopic dynamics of materials.

The cross section is divided into coherent and incoherent parts, which

correspond to scattering of the neutron wave function from individual

scattering centers with or without interference (see Figure 3.3). There is yet

another subdivision of the cross section into elastic or inelastic scattering,

depending on whether the neutron energy transfer is zero or nonzero. At

first this nomenclature may seem to be in sharp conflict with the more

customary concepts of elastic collision processes in physics as correspond-

ing to events in which the kinetic energy of the colliding particles is

conserved, not to events in which there is no energy transfer. However if
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148 E] COLLISION PHENOMENA IN PARTICLE TRANSPORT

Fig. 3.3 [:1 Diffraction of the neutron wave function by an ordered lattice of

scattering centers.

v

we remember that a thermal neutron scatters from the entire aggregate of

nuclei whose total mass is effectively infinite in comparison to the neutron

mass, we see that elastic scattering implies no neutron energy change. In

summary, then, we can classify neutron scattering as follows:

i Elastic, incoherent scattering (e.g., from a free gas).

ii Inelastic, incoherent scattering (excites energy states of the scattering

system—e.g., atom or molecule or lattice).

iii Elastic, coherent (Bragg diffraction).

iv Inelastic, coherent.

Each of these components of the scattering cross section is characterized

by somewhat different mathematical properties.

We can catalog a variety of useful mathematical properties of thermal

neutron cross sections:

i Z,(v) and Es(v'->v) are nonnegative functions of v (since they can be

interpreted as probability distributions).

ii For isotropic materials, the scattering cross sections are independent

of the incident neutron direction and dependent only on the relative

scattering angle in a scattering collision

23(v) = 2:(v)’ 25(Y'——)Y) = E_\_(v'_)v, Q’ ~

(This property would be violated in a crystal or in an ordered polycrystal-

line material.) In general we can then write the angular dependence of the
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LINEAR COLLISION OPERATORS E] 149

scattering kernel as an expansion in Legendre polynomials:

, °° 2l+l , ~ , A

23(1' —->V)= 2 T 21(1) ->o)P,(SI ‘9) 1-0

It is frequently a good approximation to retain only the first term in this

expansion, that is, to assume isotropic scattering in the lab system, because

of the randomizing effects of thermal motion and the increased effective

mass of the scatterer (again, this does not hold up if diffraction effects are

important). More generally, one retains several terms in the expansion

(3.2).

iii The scattering kernel must obey the property of detailed balance:

oM(v)E,(v->v') = o’M(v’)E,( — v’—> — v)

This is a necessary and sufficient condition for the neutrons to eventually

come into thermal equilibrium with the moderator in the absence of

leakage, absorption, or sources. On a microscopic level, detailed balance is

intimately connected with time reversal symmetry.'3"4 On a macroscopic

level, detailed balance plays an important role in the irreversible relaxation

of the neutron gas toward thermal equilibrium.

iv At high v or v’ the cross sections must approach those of a free gas,

since the neutron energy is much greater than the binding energy of the

atoms. They eventually assume the slowing down form in which the

motions of the nuclei are neglected entirely. This will occur for energies

E >> E,h~0.025 eV. Then if we note that over a considerable energy range

neutron scattering from nuclei is isotropic in the center of mass system

(s-wave scattering), we can calculate the large energy form of the scatter-

ing kernel as

/ __ E1(E”) , E

23(E _)E’ILO)_ _a)Er H's)’ < I

=0, otherwise

where

l E 1/2 E’ l/2 A a

,1,55[(A+1)(-E—,) -(A-1)(?) pogo-o

v For incoherent scattering, we find smooth, monotonically decreasing

total cross sections that approach the free atom cross section 2,, for large

0. In contrast, the cross sections characterizing coherent scattering behave
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150 [:1 COLLISION PHENOMENA IN PARTICLE TRANSPORT

very irregularly and exhibit peaks corresponding to Bragg diffraction

effects (see Figure 3.4). In both cases, however, the cross sections assume

the limiting forms

kT 1/2

2,(o)~2fr = constant for large 0>>( 7 )

o

2,(0)~ —v'— for small 0—>0

vi For incoherent inelastic scattering, the scattering kernel 2,(v’—>v) is

smooth and well-behaved (actually, we later indicate that the kernel is

usually square integrable). For coherent or elastic scattering the kernel

becomes quite singular as a consequence of diffraction effects.

vii A characteristic feature of neutron transport in fissile materials is the

presence of nuclear fission reactions that produce additional neutrons. If

21(0) is the macroscopic cross section characterizing fission events, 12(0) is

the average number of neutrons emitted per fission event, and X(0) is the

probability distribution characterizing fission neutron energies (assumed to

be emitted isotropically), we can identify the fission source term in the

transport equation as

“MAE? fd30’11(0')0'21(0’)n(r,v’,t)

Actually, this term corresponds only to the “prompt” fission neutrons that

appear instantaneously with the fission event. There are also neutrons that

appear after an appreciable time delay as the decay products of radioactive

fission fragments. Appropriate source terms for these delayed neutrons can

be written in terms of the nuclei precursor concentrations C,-(r, t) and their

respective radioactive decay constants as

s;‘='““(r.v.o= 2 xi’) xc-(r. 1)

The key ingredient in all studies of neutron transport is a knowledge of the

various relevant neutron-nuclear cross sections. The complicated depen-

dence of such cross sections on neutron energy and angle of incidence,

combined with the large number of isotopes involved in nuclear systems

analysis, implies that neutron cross section data can become quite mas-

sive.ls Such data have been accumulated over the past few decades by both

experimental measurements and theoretical calculations. Indeed, these
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Z§°"(v)

(b)

Fig. 3.4 1:] Neutron scattering cross section behavior for incoherent (a) and

coherent (b) scattering.
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152 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

data have become so voluminous that they are now most conveniently

stored on magnetic tapes and manipulated by computer.

To standardize the format and treatment of neutron cross section data,

the Evaluated Nuclear Data File (ENDF)l6 was established to consolidate,

organize, and present these data in a form convenient for nuclear applica-

tions. The ENDF system contains both neutron and photon cross section

data, along with data processing computer programs that can manipulate

them into the most convenient form for the user. Of most interest is the

ENDF / B data set, which contains complete, evaluated sets of nuclear data

for approximately 80 isotopes for all significant neutron-induced reactions

in the energy range 10—5 eV to 20 MeV. In particular, this file provides

cross section data for the reactions (my), (n,fission), (n,p), (n,n), (n,n),

(n,n’), (n,2p), and (n,2n), as well as for the differential scattering cross

sections. ENDF / B is regarded as the standard source of nuclear data for

use in nuclear systems analysis in the United States (there are comparable

data sets in Europe and in the Soviet Union). The ENDF/ B data set is

continually being reevaluated and updated as new cross section measure-

ments become available. Revised versions of the data set are issued at one

or two year intervals.

Modeled Neutron Cross Sections 1:] In general, neutron cross sections are

rather complicated functions of velocity. Hence it is customary to make

one of several standard approximations or models to allow analytical

investigations of thermal neutron transport:

i Isotropic scattering in the lab system:

2S(v’—>v)=(47r)_12,(0’—>o)

ii Separable or synthetic kernels (also called “amnesia” kernels): '7

E.(v’—>v)=(%)Z.(v')vM(v)E.(v). r-‘EfO°°dvvM(v)E.<o

This particularly simple model of the scattering kernel satisfies detailed

balance and gives the correct total cross section. It represents an “instant

thermalization” process in which one collision is sufficient to throw a

neutron into thermal equilibrium with the moderator. Synthetic kernels are

frequently used as the first level of attack on a given problem in thermal

neutron transport, since they usually allow an exact analytical solution.

iii Modified synthetic kernel :18

2.0+)=(%)2..(1>90M(v)2..(o+(g)zlosiv-v')
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LINEAR COLLISION OPERATORS 1:1 153

The 6(v’— 0) term in this model mocks the elastic scattering contribution

so that the kernel is useful for the study of transport in polycrystalline

materials.

iv N-term degenerate kernels: ‘9:20

N N

250,-“) = 0M(”) E 2 aijgi(v)j_i(vl)

i=lj=1

Various prescriptions can be used to determine the functions g,-(v) and fJ-(v')

in this model (e.g., variational or least squares methods), and by allowing

N to become large, this model can describe the true scattering kernel to a

high degree of accuracy (see Section 7.3.5).

v Continuous slowing down models. To describe collision events experi-

enced by neutrons with speeds considerably in excess of those characteriz-

ing the thermal motion of the host nuclei, it is common to ignore “up-

scattering” events and assume that the interaction rate E,(E)4>(E) is a

slowly varying function of energy so that a low order Taylor series

expansion

2.(E')¢(E’>~2.(E>¢<E> +(E— mg [moan] + - --

can be introduced into the collision integral to write

fowdE'E.(E'4E)<1>(E')~Z.(E)¢(E)

a w I I I __

+ 5 [0 db‘ 1(E —>E)(E E))E.(E)¢(E)]

Then the collision term (an/8t)coll takes the form of a differential operator

s _E,(E)¢(E)+ 5% [mama-12)]

coll

Such continuous slowing down models (so-called because truncating the

Taylor series expansion is tantamount to assuming only an infinitesimal

energy loss in each collision) have played an important role in both the

understanding of neutron slowing down (Fermi age theory)” as well as in

forming a basis for practical computational tools.”23

Problems Encountered in Neutron Transport Theory E] The problems aris-

ing in neutron transport theory can be grouped into three classes:
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154 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

1 Determination of the neutron distribution established by a steady-

state source in a subcritical medium.

ii Determination of the geometric size or composition of a multiplying

medium that will yield a stable fission chain reaction (i.e., the

criticality problem).

iii Various types of time-dependent problem.

Neutron transport problems are somewhat unique because of the enor-

mous range of neutron kinetic energies (some 108 kT) that appear in fission

chain reacting systems. Since most neutron diffusion problems involve

energetic fission neutrons slowing down into thermal equilibrium with the

host material, there arises a nonsymmetric mathematical structure quite

different from that encountered in many other areas of transport theory.

Since neutrons can easily penetrate materials and cannot be held in by

surfaces, the boundary conditions characterizing neutron transport prob-

lems are usually very simple, and standard techniques from applied

mathematics (e.g., integral transforms or separation of variables) can be

utilized to solve the neutron transport equation in many cases.

The subject of neutron transport theory has also benefited from its

central role in the development of atomic energy. This attracted at an early

stage the interest of eminent physicists such as Fermi, Wick, Peierls,

Placzek, Wigner, Bethe, Marshak, and many others. This level of intense

activity has continued to be stimulated by the demands of the nuclear

power industry, and over the past decade some 1200 papers have been

published on the subject of neutron transport theory.“

3.1.2 [:1 The Transport of Charged Particles E1

The Transport of High Energy Electrons [II We might expect that the

transport of any high energy particle through matter could be described by

a transport equation of the form '

g

at + v'Vn + 02m = fd3o' o’Ex(v’—>v)n(r,v', t) + s (3.3)

where n(r, v, t) is the phase space density for the particle of interest, and E,

is the interaction cross section. Of course, implicit in this equation are the

assumptions of essentially random scattering centers and the neglect of

quantum effects such as coherent scattering. (Even these effects can be

included, provided we calculate the cross sections properly. We can

evidence the inclusion of coherent scattering in neutron transport.)

We would now like to apply this equation to the study of the transport

of high energy electrons. Several comments concerning this transport
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LINEAR COLLISION OPERATORS I] 155

process are necessary. First, the electrons can experience a variety of

interactions including elastic scattering by atomic nuclei, inelastic scatter-

ing by atomic electrons, the production of secondary electrons, and

bremsstrahlung. Because of the high energy of the electrons, we can

essentially neglect upscattering. This makes electron transport very similar

to the neutron slowing down process (see Figure 3.5).

Perhaps the primary difference from neutron transport is due to the

inelastic scattering from atomic electrons. The charged particle suffers

large numbers of such encounters because of the long range of the

Coulomb interaction. This results in an effectively continuous interaction

with the scattering material. Each of these collisions results in only a very

small deflection and energy change because of the small mass of the

atomic electrons. Whereas only several neutron-nucleus collisions were

sufficient to reduce the neutron energy to a fraction of its original value, a

similar reduction in charged particle energy would typically require about

10‘ interactions.

In addition to these frequent small angle deflections, there also occur

infrequent catastrophic encounters with nuclei in which the electron suffers

a large deflection in angle. This latter collision mechanism is more remi-

niscent of neutron-nuclei interactions.

The presence of the small angle Coulomb scattering is the principal

complication arising in fast charged particle transport, and it is one of the

reasons that most studies of such phenomena go directly to computer

calculations (e.g., using Monte Carlo25 or moments methods”). A variety

of analytical methods have been used to simplify the treatment of small

angle scattering within such computer studies.”—28

To illustrate, let us rewrite Eq. 3.3 in such a way as to separate the

contributions from weak interactions (primarily inelastic) with atomic

Fig. 3.5 E] Electron scattering from atomic electrons and nuclei.
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156 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

electrons that are frequent, but cause small angle deflection from infre-

quent strong interactions (primarily elastic) with nuclei, which are char-

acterized by large angle scattering and little energy loss. To decouple the

angular scattering from the energy loss interactions, we first treat large

angle scattering as a monoenergetic process

fdso'o’Es(v'->v)n(r, v’, t) —- uES(v)n(r,v, t)

—>fd§1’02,(§2’-Q)[n(r, o',1)-n(r,o,1)]

and then use continuous slowing down theory to describe the electron

energy loss. That is, we assume the differential energy loss per path length

s is given by the Bethe formula25

E _ _ 2'n'pNrémc2 Zln E2(E+2mc2)

‘is (o/c)2 A 2mczE_2

Now if we note

i_i

at as

e|-—-

we can eliminate t in terms of the path length s (hence the energy E). If we

normalize s to the electron range RE by defining t=s/RE, we can rewrite

the electron transport equation as

ill “.92. *1 *1 _ *

a[+12 ar_fdo 2,(o fl)[<p(r,fl,t) q>(r,fl,t)]+s (3.4)

A variety of techniques have been applied to solve this equation. For

example, it is possible to go one step further and model the scattering as an

“angular dispersion” process (after Bethe”)

An alternative method is to attack Eq. 3.4 directly by seeking a relation

among the spatial moments of the angular flux (Spencerz‘s). Most fre-

quently in modern calculations, it is customary to use Monte Carlo

methods that include an approximate treatment of the small angle scatter-

ing events.28

Electron Conduction in Solids El The motion of electrons in the conduc-

tion band of a solid is yet another problem that can be described by
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LINEAR COLLISION OPERATORS El 157

transport theory.30 Of course the actual electrons must be described by

quantum mechanics. Provided the external field applied to the solid is

sufficiently weak, however, the motion of the electrons can be represented

by that of a fictitious classical particle with momentum hk (the “effective

mass theorem”). That is, we describe a collection of such particles by a

distribution function

f(r, k, t)d3rd3k= average occupancy of an electron state in

d 3k about k, d 3r about r, at time t

Since the electrons are Fermi particles, a state can hold either zero or one

electron. Hence we use the concept of the average occupancy of a state

rather than the more customary concept of particle density.

The equation describing the time evolution of f(r, k, t) is now the

classical transport equation

Q mi '.l=(fl)

at“ 8r+k ak 8t .0“

where

._ l a -_ .

I‘: z

Here, (Bf/80cc“ is the change in f (r, k, t) due to the scattering of an electron

of k’ into k caused by interaction with an irregularity in the crystal lattice.

The probability for such a transition can be calculated from quantum

mechanics. There are several sources of such interactions: scattering by

lattice vibrations (energy change), impurity scattering (no energy change),

electron-electron scattering, and other mechanisms attributable to vacan-

cies, grain boundaries, or dislocations. If we characterize the scattering by

a conditional probability W(k’, k) that gives the probability for scattering

from k’ to k, the corresponding scattering rate is

(probability state k’

contains electron)

(probability state k

x W(k’, k) x .

contains no electron)

Hence we find

(2%’)6011 : jizdg’klflk) W(k’k'll 1 -f(k)l —f(k) W(k,k')[ 1 —f(k')]}

where BZ means that we are to integrate over a Brillouin zone in k-space.

Notice here that the equilibrium distribution is not the Maxwellian M(v)
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158 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

but rather the Fermi-Dirac distribution

f0(k)=[exp(l:f"T)+l]

This equation can be solved using many of the same ideas that prove to be

useful for neutron transport or gas dynamics. Since the transport equation

is nonlinear, the first step is linearization. Then various standard ap-

proximations can be introduced to allow an analytical study of the

transport equation.

—1

3.1.3 [3 Photon Transport 1] The subject of photon transport can be

conveniently separated into two distinct topics: the transfer of thermal

energy by low energy photons (“radiative transfer”), and the transport of

high energy photons through matter (e.g., gamma or hard X-ray transport).

The second process is usually analyzed under the assumption that the

photon fluxes are so low that their energy deposition in matter does not

significantly perturb the background medium. Therefore this transport

process is quite similar to such other linear transport phenomena as

neutron or charged particle transport and can be analyzed accordingly.

In sharp contrast, radiative transfer processes usually involve the trans-

port of significant quantities of energy by relatively low energy photons

(e.g., in the visible, UV, or soft X-ray spectrum) of atomic origin, and this

radiant energy transport can significantly affect the background medium

by changing its temperature or optical properties. The theory of radiative

transfer is also similar, in certain cases, to that of neutron transport and

therefore is susceptible to many of the mathematical methods we discussed

in Chapter 2. In fact, we have already noted that several of these tech-

niques actually originated in the theory of radiative transfer (e.g., the

Wiener-Hopf method)“

Radiative Transfer El Although the transport equation characterizing

radiative transfer is quite similar in form to that describing neutron

transport, there are some rather significant differences between the physics

of these two processes.

i The optical properties (i.e., the cross sections) of a medium depend

strongly on the radiation field itself. Hence we usually have to

contend with a highly nonlinear transport problem.

ii The macroscopic cross sections characterizing photon interactions are

continuous functions of position because of variations in the material
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LINEAR COLLISION OPERATORS El 159

density. (Neutron cross sections are usually constant, at least piece-

wise, in position.)

iii The photon mean free path varies strongly with wavelength over the

entire frequency spectrum (line absorption). (This is analogous to the

resonance behavior in neutron cross sections.)

iv In radiative transfer we are frequently interested in the inverse

problem, that of determining the source and material from the

measured radiation field. (In neutron transport calculations we only

encounter the direct problem of determining the neutron distribution

given the source and material.)

In a broad sense radiative transfer encompasses all phenomena involving

the propagation of electromagnetic radiation and its interaction with

matter—at least to the extent that such phenomena can be described by a

transport equation. Hence the applications are quite varied. For example,

radiative transfer problems arise in astrophysics, meteorology, photometry,

high speed gas dynamics (radiation hydrodynamics), the use of optical

measurements to study materials (e.g., plasmas), and many other areas.

The Radiation Field El In analyzing photon transport we emphasize the

particle aspect of electromagnetic radiation by considering the radiation

field to be composed of a “photon gas”.32'38 Rather than use the photon

phase space density n(r, v, t), it is customary in radiative transfer to define

the radiation specific intensity

I,(r, Q, t) _=_hu c n(r, Q, r, t)

where the frequency v has replaced energy E =hv as an independent

variable. If we recall that photons always move with a speed c (if we can

ignore refraction effects) and are characterized by an energy E =hv, we

can see that

energy

1'0" a’ t) = photon

>< photon speed X angular density

and therefore can interpret 1,,(r, SAZ, t) as the “energy angular flux.” Of

related interest is the angle-integrated or average intensity J,(r, t)

J,(I,1)E(ZI;) f dor,(r,r“z,r) (3.5)

We also define the radiant energy density at frequency v by

u,,(r,t)-z(%)fd§ll,(r,§l,t) (3.6)
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I60 1:] COLLISION PHENOMENA IN PARTICLE TRANSPORT

and the total radiant energy density is given by

“(1, 05%) [0 map f dt‘21,(r,f2,1) (3.7)

The radiant heat flux vector is defined by

q(r,t)sf°°dvfd§l§21,(r,@,t) (3.8)

0

and corresponds in neutron transport to what we would call the current

density J(r, t), except that it now describes energy flow rather than particle

flow. Finally, we can define the radiation pressure tensor

1>(r,t)E(Lwdyfdnnotooa) (3.9)

As an example, note that when the radiation field is isotropic,

4w °° l

P,.j-(§)s,jf0 dvI,—(§)u8,j

The Equation of Radiative Transfer [1 Using the foregoing concepts, we

can derive an equation of radiative transfer in a manner very similar to

that used for neutron transport, by equating

1 a1,

6 at + (2 -VI,, = change in Ip due to sources and sinks

=jl'(r’ 9’ t) _ kv(r’ t)Iu(rr Q’ t)

where we have denoted the photon emission and absorption terms by j,

and k, I, (and explicitly noted that the absorption rate will be linearly

proportional to the radiative intensity 1,). These terms are more commonly

expressed in terms of the photon mass emission coefficient c, defined by

j, E pa, = rate of radiant energy emitted per unit phase space volume

and mass attenuation coeflicient K,

k, I, E prey], = rate of radiant energy absorption per unit phase space volume

where p=p(r,t) is the mass density of the host material. Photon scattering

processes are customarily included in the definitions of e, and 1:, (since a
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LINEAR COLLISION OPERATORS El 161

scattering event corresponds to the absorption followed by the reemission

of a photon).

The equation of radiative transfer can be written then as

a] . A

% a; +fl-Vl,,=p(r,t)[—1c,(r,t)I,(r,SI,t)+e,(r,t)] (3.10)

In writing this equation, we have also neglected polarization and disper-

sion (dependence of the refractive index on 11) and collective effects

(correlations), and we have assumed an isotropic medium, permitting us to

regard photon interactions as independent, successive isolated events.

Coherent phenomena such as reflection of light are also omitted from this

description.

Radiative Processes [II If we note that pic,/ N has the units of area, we can

identify this quantity as just the microscopic cross section for photon

absorption. To calculate the absorption and emission coefficients K, and e,

we must consider the possible interaction mechanisms for a low energy

photon propagating through a material.39 Such processes are associated

with transitions between the energy levels of the atoms or molecules

comprising the host medium. The change in the internal energy will be

equal to the radiant energy absorbed or emitted. A variety of different

processes may be involved, as noted in Table 3.2. All these mechanisms

contribute to the absorption coefficient K,. The emission coefficient repre-

sents the effective photon source term. Every capture process that appears

in 1:, has an inverse that contributes to 8,. These inverse processes may be

Table 3.2 E] Radiative Processes in Photon Transport

Elastic scattering

Rayleigh scattering by atoms and molecules

Thomson scattering by free electrons

Inelastic scattering

Compton scattering from electrons accompanied by photon

frequency change

Raman scattering by atoms and molecules, with the photon

energy loss going into internal degrees of freedom

Capture (and emission)

Line absorption (bound-bound)

Photoionization (bound-free)

Inverse bremsstrahlung (free-free)

Photodissociation of molecules
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162 l] COLLISION PHENOMENA IN PARTICLE TRANSPORT

stimulated by a preceding absorption, or they may occur spontaneously. In

an isotropic medium, the stimulated emission propagates in the same

direction (in phase) as the incident radiation; therefore it is customary to

subtract out this component by defining

x,’ = capture — stimulated emission + scattering

e; = spontaneous emission + scattering

To be more specific, let us briefly consider the photon interaction

processes of most concern in radiative transfer: photoexcitation and photo-

ionization (and their inverses).

i Photoexcitation and radiative transitions (bound-bound). The three

types of photon interaction involving an atomic transition between states

E,- and are indicated schematically in Figure 3.6, along with their

corresponding reaction rates. Here we have introduced the Einstein coef-

ficients characterizing transitions between states E,- and We recall that

these coefficients are related by

2h 113B,j

i.

J CZ

Since photons appearing in stimulated emission are “in phase” with the

incident photon, it is customary to combine the absorption and stimulated

emission terms to write an effective absorption coefficient as

(Ni _

p

K;

Notice here that if >N,-—that is, if we have a state “population inver-

sion”—then x; will be negative corresponding to an exponential growth in

intensity—that is, a laser.

ii Photoionization and radiative recombination (bound-free). Of similar

importance are bound-free processes in which a photon ionizes an atom

(or is emitted in an ion-electron recombination event)

hv+NZ—>Nz+l+e (rate=NZBI,)

e+Nz+l->Nz+hv (rate=Nz+1neot)

iii Photon scattering. There are also interactions in which a photon is

scattered by an atom. The most common scattering event involves elastic

or coherent scattering in which the incident photon energy is unchanged

(therefore is a “one-speed process”). Scattering may be a very important
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Ill/i]-

W _> Rate = N11,, 5,; = 111111

E,‘

(a)

*-

huij

) W

Rate = Ail‘ : 96y

El‘

(17)

.x.

11,. cvvvv»

/

W % ——> % 2huil- Rate = NjlvBji

£1 £1

(c)

Fig. 3.6 El Photon interactions with a two-state atom. (a) Absorption. (b) Spon-

taneous emission. (c) Stimulated emission.

process in dilute media such as planetary atmospheres in which atomic

collision processes are relatively infrequent. It also appears in a somewhat

different guise in line self-absorption or radiation trapping in optically

thick media in which a photon may be emitted, absorbed, reemitted, and

so on, many times before leaving the medium or being destroyed in a

nonradiative event.

The determination of photon interaction rates depends directly on the

state populations of the various atomic energy levels. Hence any considera-

tion of photon transport must involve the rate equations for these popula-

tion densities, which take the form

8N

WW-(Mulig't W111, 1=1~--1"
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164 1:1 COLLISION PHENOMENA IN PARTICLE TRANSPORT

Of course, the rate coefficients W,j in these equations involve a variety of

processes in addition to photon interactions. Of most importance are

electron impact processes:

iv Excitation and de-excitation by free electrons:

e + Niall/j + e

v Electron impact ionization and three-body ionization:

e+Nzz2Nz+l+e+e

Needless to say, the subject of photon interactions in radiative transfer

processes can become very complicated indeed. Fortunately, in many cases

one can considerably simplify this analysis by assuming that the medium is

in thermodynamic equilibrium (or at least partial equilibrium).

Equilibrium Models El Although the general nonlinear form of the equa-

tion of radiative transport presents a formidable computational challenge

in most applications,35 one solution can be obtained rather easily—that

characterizing the equilibrium between the radiation field and its surround-

mgs:

2hv3/ C2

o= _— E

" exp(hv/kT)—l B"( T)

Here B,(T) is known as the Planck distribution function. If we insert this

form for the specific intensity into our definitions Eqs. 3.5 to 3.9, we find

the equilibrium or “black body” values

u9=(4”)B.(T>

C

u°=(fi)oT4

c

q§’=0

4

where 0=21r5k"/15h3c2 is known as the Stefan-Boltzmann constant.

A far less restrictive model assumes that the material (but not the

radiation field) is in local thermodynamic equilibrium (LTE), which is

maintained by electron collisions. That is, the radiation field is assumed to
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LINEAR COLLISION OPERATORS 1:1 165

be sufficiently dilute that electron excitation and ionization exceed

photon-induced processes to yield an equilibrium condition in which the

state populations are related by the Boltzmann factor

N1 8 _h"u

Then the photon emission processes are essentially independent of the

radiation field and are given by

s; =B,(T) (3.11)

5. l 4".

in which it is noted that the Planck function B,(T) depends only on the

local temperature of the material. Equation 3.11 is known as Kirchhofj’s

law.

The assumption of LTE results in an enormous simplification, and it is

customarily made in radiative transfer problems. It is not necessarily a

good assumption (it certainly does not hold in stellar atmospheres in which

the particle density is quite low). However the equations describing radia-

tive transfer are so horrible without this assumption, that LTE is assumed

simply for mathematical convenience in many cases.

A somewhat different model takes the opposite extreme by assuming

that both the free electron density and the radiation field are dilute enough

to permit excited atoms to emit spontaneously and ionized atoms to

recombine by photorecombination. In this corona equilibrium model there

is no collisional excitation or de-excitation; therefore to achieve

equilibrium, the electron impact ionization and photorecombination

processes are balanced.

In many instances these quasi-equilibrium models are inadequate and

one is forced to a fully non-LTE calculation in which coupled rate

equations for state population densities must be solved simultaneously with

the equation of radiative transfer (and perhaps also with the hydrody-

namics equations characterizing the motion of the host medium). For

example, in many problems of plasma dynamics, energy is added to the

plasma at a rate sufficient to produce a non-LTE state (e.g., laser heating

of plasmas). Needless to say, the complexities of such calculations quickly

oblige one to resort to brute force numerical solutions of the equations of

non-LTE “radiation hydrodynamics.”

To include elastic scattering processes, we can define y, Eon/o, so that

the photon source function becomes

S.—>Y.B.+(l—Y.)f ‘j—funai)
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I66 1:] COLLISION PHENOMENA IN PARTICLE TRANSPORT

Customarily, the LTE model used in astrophysics assumes that 7, =1. That

is, if the density is high enough for LTE to be valid, scattering processes

usually can be ignored. In the study of photon transport in atmospheres,

one frequently assumes the low density limit in which y,=0, and only

scattering interactions are considered.

Some Representative Problems in Radiative Transfer E1 The classical

model of a stellar atmosphere in radiative equilibrium is based on the LTE

assumption. The problem of determining the emergent intensity I, from

the surface of a star is just the Milne problem. To simplify this calculation,

one frequently makes the rather drastic assumption that is; and y, are

constant or that they can be replaced by appropriate averages over

frequency v. Then Eq. 3.10 becomes linear and frequency independent

0 -vr + rc’1(r, it) = (1 - y)rc’fd§l’f(0’->0)I(r, 0')

where l E [(Tdvlr This model is known as the grqr approximation and

corresponds to the one-speed approximation in neutron transport theory.

The model can be simplified even further by using the equilibrium condi-

tion

00 00

f dv KLJ, = f dv KLB,

0 0

to relate temperature to the average intensity J. Then if 1c, is not dependent

on frequency v, we can integrate to find

(%)T4=f0wdvB,(T)

which implies that in radiative equilibrium

J=0T4

Thus we find that T 4 obeys the one-speed transport equation of the form

1 oo

T‘(z)=—f dz’E1(~|z—z’|)T‘(z’)

2 0

A slightly more general model is the so-called uniform picket fence

model in which one divides up the frequency range and assumes that rc,',
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and y, are independent of v in each range to arrive at

fl~VI,+r<|.I,-= 2 2 rcjvj Kit/,- 2 rcjfdfl’IJ-(LQ’)

j=1 j=l

where

1,.(r,r‘z)= dv1,(r,s‘i), 1,5 -”—4 dvB,(T)

Av, 0T Av;

This is obviously just the analogy to multigroup transport theory.

Other representative problems in radiative transfer include the follow-

ing:

1 Visible and infrared radiation transport in a planetary atmosphere

(the analogue to the albedo problem in neutron transport).

ii Trapping of resonance radiation in a gas (the analogue to the slab

criticality problem).

iii Sunlight at large depths in the ocean (analogue to calculation of the

asymptotic flux in an infinite medium).

iv Radiative shock wave structure (analogue of the two adjacent half-

space problem).

For more details and a bibliography on these problems, the interested

reader should refer to the review by Stewart32 and the monograph of

Pomraning.35

High Energy Photon Transport [1 Thus far our attention has been di-

rected toward radiant energy transfer by photons of low energy. Of major

concern in the analysis of nuclear systems, however, is the transport of

high energy photons such as gamma or hard X-radiation. In one sense the

latter transport processes are complicated somewhat by the possibility of

new types of photon interaction such as Compton scattering, pair produc-

tion, and photonuclear reactions.

However the transport of high energy photons is greatly simplified by

the recognition that the photon fluxes of interest are invariably low enough

that photon energy deposition does not significantly perturb the back-

ground medium. Thus, in sharp contrast to radiative transfer problems,

gamma or hard X-ray transport is essentially a linear transport process,

similar in many respects to neutron transport. Indeed, this similarity is so

strong that the notation and methods used to analyze neutron transport
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168 1:] COLLISION PHENOMENA IN PARTICLE TRANSPORT

can be taken over directly to high energy photon transport with only a

change in the relevant interaction cross sections.

The dominant physical process in such transport phenomena is usually

Compton scattering, in which the photon scatters from a free electron,

suffering a change in direction and frequency (energy). The differential

scattering cross section for this process is given by the Klein-Nishina

formula. One can include appropriate correction factors to account for

atomic electrons. For lower photon energies one must also account for

coherent scattering from atomic electrons (although in this case no photon

energy change occurs).

Photon absorption processes include the photoelectric effect (photoioni-

zation or excitation usually followed by subsequent photon emission as the

excited atom decays) and pair production (photon decay into an electron-

positron pair, followed by the annihilation of the positron accompanied by

the emission of two photons of energy 0.511 MeV). The cross sections for

all these processes have been measured or calculated and are available in

extensive evaluated nuclear data files similar to those compiled for neutron

interactions.

3.2 [I THE BOLTZMANN COLLISION TERM [1 Many of the

mathematical concepts used to describe particle transport processes can be

traced back to developments in the kinetic theory of gases. In fact it was

more than a century ago that Boltzmann derived the original “transport

equation” that bears his name to describe the particle distribution function

of a rarefied gas.

Yet there is one very important difference between Boltzmann’s equa-

tion for a rarefied gas and the transport equations characterizing random

walk processes such as neutron, electron, or photon transport we have

been studying to this point. In the latter instances we could justifiably

neglect all collisions among the transporting particles (e.g., neutron-neu-

tron or photon-photon interactions) and consider only interactions in

which the nuclei or atoms comprise the host medium. This assumption led

us to a linear transport equation.

However in a gas composed of a single type of particle, the only

collisions are those of the gas particles with one another. Hence the neglect

of particle-particle collisions would result in a trivial description of the gas

(“free molecular flow” or the ideal gas model). Thus we must consider

such collisions, and as we might expect, this makes it necessary to use a

nonlinear transport equation, the Boltzmann equation, to describe the

ga$31-50
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THE BOLTZMANN COLLISION TERM [1 169

3.2.1 [1 Derivation of the Boltzmann Equation [1 Boltzmann’s original

derivation of the transport equation for a gas was based on physical

arguments. A variety of attempts have been made to provide a more

“rigorous” derivation of Boltzmann’s equation directly from particle

mechanics (i.e., Newton’s laws). Even today this subject is a very lively

one, as a glance at the literature of nonequilibrium statistical mechanics

will indicates"56 Section 3.4 reviews some of the more exotic questions

concerning the foundation of kinetic theory in general and Boltzmann’s

equation in particular. For the present we simply note that such studies

have indicated that the usual form of the Boltzmann equation is valid

under the assumptions of (i) short-range initial correlations among the gas

particles, (ii) low densities (sufficiently low that only binary collisions

occur) and times long compared with the duration of a collision, and (iii)

density gradients small over the range of the interparticle potential.

We adopt a more heuristic and conventional approach to the derivation

of the Boltzmann equation here by implementing the following assump-

tions?“—45 (1) considering only binary collisions (e.g., a dilute gas), (ii)

ignoring the presence of external forces, and (iii) assuming that the velocity

of the gas molecule is uncorrelated with its position. The third assumption

is known as the “stosszahl ansatz” or “molecular chaos” assumption. It

implies that the probability of finding two particles simultaneously in d 3r is

given simply by the product n(r, v, t) n(r, v’, t) d3r. This is only of limited

validity if the particles are interacting, of course, since the presence of one

particle will influence the orbit of the second particle, hence its distribution

function. We apply this assumption to determine the changes in n(r,v,t)

due to binary collision events. First note that the rate of decrease in

n(r,v, t) due to collisions of the type (v,,v)—>(v’,,v’) is (see Figure 3.7):

|vI —-v|n(r,v,t)n(r,v,,t)o(|v—v,|,0)dl'1d3vl

where o(|v1—v|,0) is the differential cross section for scattering through an

A

angle 0. If we now integrate over v1 and Q, we find the loss term due to

collisions as

n(r,v,1)fd’v,fdoo(|v, -—v|,0)|vl —v|n(r,v|,t) (3.12)

Next, we calculate the gain term due to collisions by first noting in analogy

to Eq. 3.12 that the rate of collision transfer from (v'l,v’)—>(v|,v) is just

fdsv'lfdfio’flv'l—v’|,9)|v]-v'|n(r,v’,t)n(r,v],t)
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170 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

0

Fig. 3.7 El Coordinates characterizing a binary collision event.

where o’(|v’|—v'|,0) is the differential cross section for scattering from

(v’,,v’)—>(vl,v). But since these scattering processes are the inverse of the

(v|,v)—>(v'l,v’) collisions, we know

a’(|v’1-v’|119)=v(lv1—vl1ll)

Furthermore, conservation of momentum in a collision event implies

|v.—v|=|v1—v'|

while

d30d301=d30'd30’1

Hence the gain term can be rewritten in terms of the precollision coordi-

nates (v,,v) as

Idsolfdmv,—v|o(|vl—v|,0)n(r,v’,t)n(r,v§,t)

Note here that the final velocities v’ and v’l can be determined as functions

of the initial velocities v and vl by solving the kinematics equations

characterizing the two-body collision event. If we now combine this with

the loss term, we find the usual Boltzmann collision term

8n _ 3 A _ _

(E)coll—fd vlfdnlv vlloqv v1L0)

X [n(r, v’, t)n(r,v'|, t) — n(r, v, t)n(r,vl, t)] (3.13)
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or in the conventional (and obvious) notation

(in _ 3 A _ I I _ =

( at )coll—fd vlfdnlv vllo(n 7'] nn,)__](n,n)

The Boltzmann equation itself can then be written as

an an

E +v- ar =fdsvlfdmv—vl|a(|v—vl|,0)(n’n1—nn|) (3.14)

Here we should note that the assumption of molecular chaos leads directly

to the quadratic dependence on the phase space density, (n’nj-nnl).

Actually, using this assumption we could have immediately written the

collision term as57

(%)wu= fd30|fd3g'ga(g’->g)(n’n’l—nnl) (3.15)

where g=v—vI is the relative velocity between the colliding particles. But

conservation of energy demands |g|=|g'|, hence implying that o(g’—>g)

must contain a factor 8( g’——g). Consequently the six-fold integral in Eq.

3.15 reduces to the five-fold integral in Eq. 3.13 over the variables v1 and

neg/Igl-

To proceed further we must choose a specific two-body interaction

potential, then solve the two-body problem for the particle orbits to arrive

at a more explicit form for the collision integral. Fortunately we only

require the relationship between the asymptotic precollisional states V, VI

and the postcollisional states v’, v’,, and this considerably simplifies a rather

cumbersome calculation. We avoid even this analysis, since most of the

features of the Boltzmann collision term we wish to utilize in our subse-

quent studies hold for general central force lawsf‘M9

3.2.2 1] Properties of the Boltzmann Collision Term J(n,n) E1 The

Boltzmann equation is nonlinear. Therefore its solution is an extremely

difficult task in all but the most trivial situations. However there is one

nontrivial solution of some importance. Suppose n(r, v, t) is independent of

r and t. Then in the absence of external forces, Eq. 3.14 implies

J(n,n)=fdsolfdfllv—v1|o(|v—-vl|,0)(n’n]—nn1)=0 (3.16)

Certainly a sufficient condition on n(v) is that

n(v’)"(v’1) - n(v)n(v1) =0
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172 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

One can demonstrate""“ that the most general solution consistent with

energy and momentum conservation is

n0(v) = cexp] — A(v —uO)2]

where c, A, and u0 are arbitrary constants.

If we introduce the usual concept of temperature and normalize, we find

that the equilibrium distribution takes the form '

m 3/2 mv—u2

"°(v)="°M(v)E”°l2w/<T) expl_ (ZkT)

This is the usual Maxwell-Boltzmann distribution. For future use, note

here that since Eq. 3.16 involves only the v dependence of no(v), we could

allow no, T, and u to be functions of r and t and still preserve the property

that J(n0,n0)=0.

We can extend this result to include an external force field that is

derivable from a potential, F = —8<I>/8r. Then a simple calculation indi-

cates that the more general form of the equilibrium distribution function is

32 _ 2

no(r,v)=no(%_) / exp[_£%iql]

where u is normal to V<I>. Notice that the equilibrium number density is

now spatially dependent

"00) = f d3” "00» v) = "0 exp[ — %

Hence we find that the Maxwell-Boltzmann distribution n0(v) is an

equilibrium solution of the Boltzmann equation. But will any solution of

Eq. 3.14 tend to approach n0(v) for long times? This is answered by the

famous H-theorem of kinetic theory.58

Boltzmann’s H-Theorem. Define the quantity

H(t)Efd3rfd3on(r,v,t)ln[n(r,v,t)]

where n(r, v, t) satisfies the Boltzmann equation 3.14. Then

dH

Prooj‘. To simplify, we restrict ourselves to the case in which there are no

external forces present and the gas is assumed to be in a homogeneous
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state so that the Boltzmann equation becomes

an

— =J n,

at ( n)

Now we explicitly compute

dH 8n

7 =fd3v,—atl[1+lnn(vl,t)]

= f (136, [d302fd120(12)|v|—v2|(n§n]—n2nl)(l +lnn,)

Next we note that since this expression is invariant under the interchange

vlsvz, we can write

dH 1 * * / r

W = 5 f 1136, f (136, f dSZa(SZ)|v|—v2|(n2nl—n2nl)(2+lnnln2)

(3.17)

or

dH l , , c , s , , r r r I

W = 5 davlfd3vzfdflo (S2)|vl—v2|(n2n|—n2nl)(2+lnn,n2)

(3.18)

where we have noted the invariance under the interchange (v,,v2)s(v’|,v’2).

But dav]d3vé=d3vld3vz,|vg—v]|=IVZ-Vil, and o’(Q)=o(SI). Thus we can

take half the sum of Eqs. 3.17 and 3.18 to find

d” I " C r 1 / I

I = zfdsvlfdlivzfdgq(fl)|vl—vzl (nznl—n2n1)[ln(nln2)—ln(n|n2)]

<0

But the integrand of this expression can never be positive. Thus we

conclude that dH/dt < 0, and our proof is complete. (For the extension to

a spatially nonuniform system, refer to Chapman and Cowling“)

Notice furthermore that dH/dt =0 only when the integrand vanishes, that

is, only when

n(vi)"(v’1)— n(v2)n(v|) = 0

But this is just the condition that gave us the equilibrium distribution no(v).

Thus we conclude that any initial distribution function n(r,v,t) will ap-

proach the equilibrium distribution no(v) for long times, a comforting

though not unexpected result.

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



I74 1:] COLLISION PHENOMENA IN PARTTCLE TRANSPORT

We also define a collisional invariant or summational invariant iI/(Lv) as

any quantity associated with a particle at r of velocity v that is conserved

in a collision event (v',v'1)—>(v,v|) such that

\l/ + \Pi = 4' + ‘In

Examples of such collisional invariants include il/=m,mv,mv2/2 (corre-

sponding to particle mass, momentum, and kinetic energy, respectively).

We can now easily demonstrate a very important property of the

Boltzmann collision term:

fd3v4/(v)J(n,n)=0

where n(r,v, t) is any solution of the Boltzmann equation. To do so, we first

write

fd3°2\P(V2)J(",")=fd3vifdsvzfdfio(§zllvz—v111i’(v2)("ini_"1”2)

(3.19)

Now we proceed in a manner similar to the proof of the H-theorem by

making the indicated variable exchanges and adding terms together:

iHEq- 3-19) + (VISVZ) '1' (v1, vzlsb'ir V2) '1' (v1, v2)s(v'2’ ]

to find

fd30.¢(v2)1(n.n)= % fd302fd3v1fdQv(§l)|v2-v1|(n£ni —n.n.)

><(¢.+1.—11'.-¢:>=0

by the definition of a collisional invariant. We use this important result

later in Chapter 4 in deriving the equations of hydrodynamics.

3.2.3 [I The Linearized Boltzmann Equation E1 We next consider the

situations in which a rarefied gas is perturbed only slightly from

equilibrium. That is, we assume that these disturbances can be described as

perturbations from the equilibrium distribution n0(v)

n(r,v,t)=no(v)[l+<p(r,v,t)], ||q>||<<l
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THE BOLTZMANN COLLISION TERM [:1 175

where the norm |]<p|| is usually chosen as

||1P||E lfd3rfd3v'16(v)l<1(r,v,1)|2 ”2

If we now substitute this into the Boltzmann equation and neglect second

order quantities, we encounter terms such as

n(r,v’, t)n(r, v], t)~no(v')no(v’,)[ l + (p(r, v’, t) + <p(r,v’|, t)]

But notice that

, . m 3 m(v’2+ 9?)

n6(v)n6(v1)= »6( 2M) exp] — —,,,T— = 1.16186.)

since by conservation of energy

012+ o’2= of+ 02

Hence we are led to the linearized Boltzmann equation of the form

8 8 A A , ,

{1 +v' a‘: =fdaihfdnlv_V1|°(|v-V1|’n)"o("1)[1P +6.—6—<1>.]

EL[(P] (3.20)

This equation is now very similar in form to the neutron transport

equation, except for the form of the collision operator L. In fact, the

equations would be identical if we could write

L[ ,0] = - V(6)q>(r,v,1) + f d3o'K(v’—>v)<p(r, v’, 1) (3.21)

where the collision frequency v is defined as

v<v>= fd’vlfdfllv—v1|v(|v-v1|,§l)n6(v1)

(and corresponds to 02,(o) in neutron transport theory). Unfortunately,

for repulsive power law potentials of the form V(r)= Vo/ r“ ', we find that

V(1J)=OO. That is, we cannot perform such a separation as Eq. 3.21 for

infinite range potentials. To circumvent this difficulty, it is usually argued

that the quantum mechanical calculation of V(r) will always have a cutoff

in the effective range and will allow us to define a finite collision frequency

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



176 1:1 COLLISION PHENOMENA IN PARTICLE TRANSPORT

11(0). (Of course the value of v is now dependent on the type of cutoff one

introduces; hence this assumption leaves much to be desired.) For such

finite-range or “truncated” potentials, one finds the following behavior of

the collision frequency:42

“hard potentials” s > 5 => v(v) monotonically increasing

“Maxwell potentials” s = 5 => 11(0) = v0 = constant

“soft potentials” s < 5 => v(v) monotonically decreasing

Moreover, for these power law potentials we can also write

lv-v1|<1(|v—v||,0)=lv-vll’Bw)

where y= (s— 5)/(s— 1).

Therefore for cutoff range potentials, the linearized Boltzmann equation

(3.20) can be written as follows:

% +v~ if + v(v)<p(r,v,t)= f .130’ K(v’->v)q>(r, v’, t)

which is mathematically almost identical to the neutron transport equa-

tion. We can crank up all our neutron transport machinery to solve this

equation. However one very important difference in the scattering kernels

characterizing neutron transport and linearized gas dynamics must be kept

in mind. To illustrate this most clearly,50 suppose we use a slightly different

form of the phase space density to linearize the Boltzmann equation

"(r,v,1)= "00) + N03”), ||N ll <<llnoll

Then the linearized Boltzmann equation can be written as follows:

8N I I I I I

w +v' ar =fd3vlfd3g go(g’—>g)[N n01+N1n0—Nlno—Nnm]

If we distinguish between the fraction of gas atoms in equilibrium (no) and

the disturbance (N), we can interpret each term in the collision integral as

follows:

N 'nél Atoms in disturbance scattered to v.

N 1’ n6 Atoms in equilibrium scattered to v.

N ln0 Atoms in equilibrium scattered away from v.

Nn0| Atoms in disturbance scattered away from v.

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



THE BOLTZMANN COLLISION TERM El 177

Notice that the first two terms are identical. Next we define

varv'wz fd3g'g11(g'—>g)n0(v’)

viEKM—W)Eno(v)fd’g'gv(g’—+g)

and, if individual terms give convergent integrals (i.e., for cutoff potentials)

vE<v>= f 11311111000] dig’gv(g'—>g)

= fd3v'vEs(v—>v’)= [d3v'vZK(v—-)v’)

Therefore we can write the linearized Boltzmann equation for gases as

8N 8N

a” Sr

+ 02(191/(1, v, t) = f dsv’[2v’Es(v’—>v) — v’ZK(v’—>v) ] N(r,v’, t)

Within the framework of kinetic theory, neutron transport is actually just

the “foreign” gas problem in which the second and third terms are absent:

6N 8N

a” 111

+ v2(v)N(r,v,t) = fd3v'v'Z_,(v’—>v)N(r,v’,t)

We can now see rather clearly the similarities as well as the differences

between the linearized gas dynamics and neutron transport problem by

noting

2,(v’-->v) —) 22,(v'—>v) — 2K(v’—>v) E 2(v’—>v)

neutrons gas dynamics

The physical difference, of course, is that in the gas dynamics problem the

disturbance atoms can kick equilibrium atoms away from v, thereby

contributing to a negative disturbance. Mathematically, this implies that

whereas Es(v’—>v) for neutron transport is everywhere positive, 22S(v’—>v)

—EK(v’—->v) may, in fact, be negative for some values of v',v, and this can

lead to negative solutions to the linearized Boltzmann equation for a gas.

We find in Chapter 5 that this produces some rather subtle differences in

the types of solutions possible for the respective transport equations.

3.2.4 El Boundary Conditions in the Kinetic Theory of Gases El There is

yet another very important difference between neutron transport and gas

dynamics problems: the types of boundary condition relevant for each

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



178 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

class of problems. In neutron transport the boundary conditions were

rather well established (e.g., no reentrant neutrons on free surfaces). Such

is not the case in rarefied gas dynamics, since one can have rather

complicated processes occurring when a gas particle collides with a surface

(e.g., “specular” reflection in which a particle simply bounces off, or

“diffuse” reflection in which the particle is absorbed by the wall and is

then reemitted with an isotropic, Maxwellian distribution).

Most of the past effort in the kinetic theory of gases has been directed at

“infinite medium” problems such as the calculation of transport

coefficients or the study of wave propagation. Only relatively recently has

serious attention been focused on boundary value problems that involve

gas-surface interactions.59 The most general form of the surface boundary

condition is usually taken as (see Figure 3.8)

|é,-v n+(Rs,v)= d30’P(v’—>v)|és-v’

e,-v’ <0

n_(R,,v’) (3.22)

where e, is the unit normal to the surface, and n_(v) and n+(v) are the

incident and scattered phase space densities, respectively. If one assumes

that no gas atoms are lost or gained in a collision with the surface, then the

surface interaction kernel must be normalized such that

f d 30 P(v'—>v) = l

é,-v >0

:1, VI///

Os

Fig. 3.8 [1 Coordinates characterizing

% gas-surface boundary conditions.
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THE BOLTZMANN COLLISION TERM 1:] 179

We should also note that the form (3.22) implicitly assumes that the

gas-surface interaction is instantaneous and is not dependent on the phase

space density—as it might be if there were significant wall heating, for

example. Since the surface is usually taken to be in thermal equilibrium at

a temperature T, the P(v’—>v) must also obey a detailed balance condition

|és'v'|M (v’) P(v’->v) = Iés-vl M (v) P( - v—> — v’)

Of course, the major difficulty inherent in studying gas-surface interactions

involves the determination of the interaction kernel itself. Since the subject

of gas-surface physics is exceedingly complex (and still prirnitively under-

stood), it is customary to model the form of P(v’->v). For example, one of

the most popular models was proposed by Maxwell:

P(v’—>v) = (l — a)8(v — v,) + a(é:-v)M (v)

where v, is the mirror reflection of the incident velocity, and a is referred

to as the accommodation coefficient for the surface. If a=0, we find

specular reflection, whereas a=l corresponds to perfect accommodation

or diffuse reflection.

One can implement more sophisticated models of the surface interaction

kernel, but these are usually limited by the paucity of data on gas-surface

interactions. In certain classes of problem it suffices to express the surface

condition in terms of only a few moments of the kernel P(v’->v), which

represent generalized accommodation coefficients that must then be

calculated or measured experimentally. An excellent review of boundary

conditions in gas kinetic theory has recently been given by Kust'zer.59

3.2.5 E1 Alternative Forms of the Boltzmann Collision Term [1

Bhatnager-Gross-Krook (BGK) Model [1 The complexity of the Boltz-

mann collision term forces us to seek simpler models of the collision

process to facilitate mathematical analysis. Perhaps the most popular such

collision model was proposed simultaneously by Bhatnager, Gross, and

Krook60 and Welander6| in 1954 and is known as the BGK model:

J(n,n)~11[n0(v) -— n(r, v, t)]

Here v is an adjustable parameter and n0(r, v, t) is the local thermodynamic

equilibrium distribution

_ m 3” _"‘(L‘M

n0(r,v,t)—N(I.I)[Wl “pl 2kT(r,t) l
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180 1:] COLLISION PHENOMENA IN PARTICLE TRANSPORT

This model is sometimes referred to as the “single relaxation time” ap-

proximation, since in the absence of spatial dependence it will imply

n(t)—>n0(v) exponentially in time as exp(— VI). The relaxation parameter 11

can be identified as just the collision frequency and could be calculated

from the collision cross section as

»<v)= fd’vifdfilv-vildlv-v1|,9)n6(v1)

More frequently, it is regarded as an adjustable constant in the model,

independent of the variables v, N(r, t), T(r, t), or u(r, t).

This model preserves several of the important properties of the more

general Boltzmann collision term. For example, it satisfies an H-theorem

and preserves the conservation laws governing mass, momentum, and

kinetic energy (thereby preserving the structure of the hydrodynamics

equations). It does not yield the correct values for the transport

coefficients, however, and most particularly, it yields the incorrect Prandtl

number p./ is.“

It should be noted that the model is highly nonlinear, since N (r, t), u(r, t),

and T(r, t) are in fact moments of the phase space density n(r, v, t).

Nevertheless, the BGK model allows one to reduce the Boltzmann equa-

tion characterizing steady flow problems to a set of nonlinear integral

equations for the hydrodynamic variables N(r, t), T(r, t), and u(r, t), which

can then be solved using straightforward numerical methods. One can also

linearize the BGK model to describe small disturbances from equilibrium.

Then the scattering kernel K(v’->v) assumes the form of a degenerate

kernel

K (v’—>v) = P"0(v)"0(v/)[ l + 12+). Iii—(2%))

ma-ur 3 "ii-">2 3

21<T00 _5i “T00 _5i] (3.23)

Generalized BGK Models (Gross-Jackson Models)“65 [1 One can easily

generalize the linearized BGK model by simply adding on more terms to

the degenerate kernel representation (3.23)

N

K(v'—>v) = 1/(v)"6(v)"o(v') a ay-tMvhlg-(V')
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THE BOLTZMANN COLLISION TERM [1 181

One popular approach is to choose the expansion functions as the eigen-

functions tp, of the linearized Boltzmann operator L. This yields in effect a

“multiple relaxation time” collision model. Typically, the eigenfunctions

are calculated for a simple modeled potential such as the Maxwell poten-

tial, in which case the 11/,- are identified as Sonine polynomials.

Application to Gas Mixtures E1 The Boltzmann equation can be easily

extended to the description of gas mixtures by writing down a collision

term for each type of interaction that can occur.“67 The general form of

the Boltzmann equation for a species “i” can then be written as follows:

n- n. N A

6' Z,'= 2 fdavifdfllv—V1|°y(|V—V1|,0)[".(V'MUD—"1(V)'&(v1)]

—+v-

j=l

For the special case of binary mixtures, A and B, this yields a set of

coupled transport equations

(in a"

TA- ‘l'V'a—rA =JAA(nA,nA)+JAB(nA’nB)

an an

8'3 ‘Pa—:3 = JBA(nB’ ".A.) + JBB(nB’ "3)

The study of gas mixtures can be simplified by the introduction of

linearization or modeled collision operators. For example, the BGK model

characteristic of a binary gas mixture would be

A

T + v. F = VAA(n°A _ nA) + VAB(n0AB _ "8)

T +1”? = VBA(n0BA " "A) + I’1313("0a _ "3)

It should be noted that this model contains three adjustable parameters,

11M, 1153, and v M,=(nB / n A)vBA, as well as the parameters TAB, TBA, uAB,

and um, which must be determined. A variety of prescriptions have been

proposed for determining these parameters, usually by demanding that the

corresponding hydrodynamic equations satisfy certain constraints.“69

The Enskog-Boltzmann Equation for Dense Gases El Enskog70 proposed a

modification of the Boltzmann collision term to account for the fact that

since gas molecules have a finite size, they cannot be located at precisely

the same point in space in a collision event. This would be a significant

effect in the description of dense gases.
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182 E] COLLISION PHENOMENA IN PARTICLE TRANSPORT

If we assume the gas molecules to be rigid spheres of radius R, the

Enskog modification takes the form

em"-

81 Hr—

fdsolfdiflvl—v)-§ZR2[x(r+%RS2)n’(r)n](r+R§Z)

—x(r—%R§2)n(r)nl(r—RQ)]

where X is a factor that accounts for the increase in the probability of a

collision event as the free volume of a gas is reduced at high densities. If

we define

bp = (g'rrR 3)no

a useful expression for X is given by

x= 1 +0.6250bp+0.2869(bp)2 +0.115(1>p)3 + - - -

The Enskog equation has been applied to calculate transport coefficients

(e.g., viscosity or thermal conductivity) in dense gases?"72

A variety of other generalizations of the Boltzmann collision term can be

developed. For example, the collision term can be extended to the descrip-

tion of inelastic collisions or even chemical reactions.”75 Furthermore, the

gas molecules can be allowed to possess structure so that internal degrees

of freedom are allowed (e.g., rotational or vibrational). However we refer

the interested reader to several review articles on these more specialized

extensions of the Boltzmann equation.

3.2.6 I] Sample Problems in Rarefied Gas Dynamics [1 Despite the

fundamental difference in boundary conditions, there are some similarities

between many of the standard problems in rarefied gas dynamics and

problems familiar from neutron transport.

1 Calculation of transport coefficients. Perhaps the easiest (and most

popular) problem in the kinetic theory of gases involves the calculation of

transport coefficients such as viscosity or thermal conductivity from the

Boltzmann equation.76 This is analogous to deriving neutron diffusion

theory from the neutron transport equation, thereby obtaining a micro-

scopic definition of the diffusion coefficient. We consider this subject in

detail in the next chapter.

ii Shear flow 77 (Milne problem). Here one studies flow past a flat plate

and calculates the “slip coefficient” (similar to the extrapolated endpoint

in neutron transport theory).
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THE FOKKER-PLANCK (LANDAU) EQUATION 1:] 1&

iii Couette flow 78 (slab problem). Flow between two moving plates.

iv Free sound propagation 79'“ (pulsed neutron problem assuming an

asymptotic exp(iB-r) spatial dependence). Solution of the initial value

problem for the linearized Boltzmann equation assuming an exp(ik-r)

spatial dependence.

v Forced sound propagation 80' 8’ (neutron wave propagation). Determine

the response to an oscillating source of the form exp(iwt).

There is a very remarkable parallel between mathematical developments in

neutron transport theory and the linearized kinetic theory of gases. Unfor-

tunately until rather recently these fields have been developed indepen-

dently. Investigators such as Cercignani,“7 Kuseer,so Williams,48 and

Ferziger“6 have opened up lines of communication between the two disci-

plines, and the cross-fertilization that has resulted has been quite benefi-

cial.

3.3 [II THE FOKKER—PLANCK (LANDAU) EQUATION El

3.3.1 [1 Derivation [II The Boltzmann equation is extremely successful

in the description of dilute gases characterized by short-range intermolecu-

lar interactions, as proved by more than a century of applications. How-

ever the binary collision approximation is certainly invalid in systems such

as ionized gases or plasmas, which have long-range interactions. No longer

can one assume that binary collisions dominate—rather, large numbers of

particles will interact simultaneously. Transport processes in such fluids

are most conveniently described by separating off the long-range, many

particle interactions using a self-consistent field term (the Vlasov term),

then treating the relatively weak short-range Coulomb collisions using a

stochastic model borrowed from the theory of random processes (the

Fokker-Planck collision term)?”

One very convenient scheme for obtaining the latter model is to assume

that the interaction forces are weak, then to expand the Boltzmann

collision term to lowest order in the interaction potential.“ To be more

precise, let us consider a single species charged fluid. Of course, any

ionized gas will contain free electrons as well as ions to yield macroscopic

charge neutrality, but since the extension of our results to several species is

straightforward, we carry through the analysis for this model.

We begin by noting that the differential scattering cross section for

Coulomb interactions (Rutherford scattering) is just

e-2e-2 l

0," Vi'Tv' ,0 = A

,(l 1' ) 4|v‘__vj|4p|§ sin‘0/2
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184 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

where p.0- = mimj/(mi + m) is the reduced mass. Since the Coulomb interac-

tion is weak, apparently the change in velocity Av=v’ —v experienced by a

colliding particle will be small. With this in mind, let us expand the phase

space density n(r,v’,t) appearing in the Boltzmann collision term about v

and retain only terms to order AvAv (in a manner very similar to the

continuous slowing down approximation we introduced in studying neu-

tron transport):

an ~ 3 A - _ _ a"1 . 8n

( at )con=fd vlfdfllv v1]o(lv v]|,0) Av n——av +Av nl—av

I . 8271] an] an l 82”

+ EAvAvmm —AvAv. ——av —av + EAvAunl —avav

We can perform the integrations by transforming to center of mass

coordinates. The details, although straightforward, are sufficiently

cumbersome to avoid in our cursory discussion (see, e.g., Montgomery and

Tidman“). Instead we merely note that performing the angular integration

yields

a" _ 3 l . a_"_ 9'1)

(57)m11_fd01[2<A3>(”‘6v ” 8v

_182nl ranan, 1 82n

+<AgAg>'(4n—8v8v ‘2 aa +2“ avav)

where g = vl — v and

,. 4rre,-2e-2 sinBmi g

<Ag>EfdSZgoUAg=

1!

A 47re,-2e-2 sin0m,n

<AgAg>=fdflgo.-,Ag1g=— m,’1n( 2 )g-stlg—gg)

[j

Note here that when evaluating (Ag) and <AgAg> for a Coulomb potential,

one encounters the familiar logarithmic divergence. In this case, we have

handled it by truncating the integration at some minimum scattering angle,

0min. If we now perform the integration over V‘, we arrive at the usual form

of the Fokker-Planck collision term first derived by Landau85 and later by

a somewhat different route by Rosenbluth, MacDonald, and Judd:86

an a 8H,- 1 82 826,

(B-i-Loll— —r‘_[ E n"_3v_ + 2 avav ' (ni 8v8v)] (3'24)
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where

l4‘)

2(m-+m-)

r j _

) Tfd’vg ‘"1

(

( no»

r E _ 4'rrei4 ln( sin 0min )= 4'rre,2 lnA

" 2 2

I 2 mi

A E 24wn02q7’,

Hi5 2'10;

J

N

I

1d‘

GiE nOj

1

N

I

This collision term can be written in an alternative form due to Landau:

an _ 8 3 , , . an , _ a_n _

(EL,- 6, f d 0Q(v,v) [ av n(v) n(v) av, ]=JFP(n,n) (3.25)

where

=_”_"’11 (kT)3 (gZI—gg)

The nonlinearity of the Fokker-Planck collision term is most clearly

revealed in this form.

An alternative derivation that is independent of the Boltzmann equation

(which is extremely suspect for a plasma in any event) can be borrowed

from the theory of random Markov processes.87 If we assume that collision

events are indeed a Markov process, the phase space density at a time t,

n(r, v, t), can be written in terms of n at earlier times as

n(r,v, t) = f d(Av)¢ (v—Av, Av)n(r,v—Av,t—At) (3.26)

where \[/(v, Av) is the probability that in time At, a particle is scattered from

v to v+Av. We can then identify

___ lim n(r,v,t)—n(r,v,t—At)

8t coll At—>0 At

For small At, we can use a Taylor expansion to find

37

2

+%AvAv:(¢ an +26” a"b-t- 82¢

n(r, v, t) = fd(Av)[ n(r, v, 0111 (v, Av) —At\l/%£t —AV(%rl/+ n all)

8v8v WK "avav
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186 1:1 COLLISION PHENOMENA IN PARTICLE TRANSPORT

If we now use this in Eq. 3.26, we find

a a 1 a a

(5)“)? - a-[<Av>n] + 5 a a : [<AvAv>n]

where we define

(Av); f d(Av)¢ (v, Av) Av

(Av Av) E f d(Av)11/(v, Av) Av Av

In terms of our earlier notation, we can explicitly write

<Av>=fdhalfdQIv—v||o(|v—v||,0)n(v|)Av

<AvAv>=Idsolfdmv—v,|o(|v—v||,0)n(v|)AvAv

As a side remark at this point, although it is customary to refer to

equations of the form (3.24) or (3.25) as Fokker-Planck equations, they are

in fact quite different from the Fokker-Planck equation familiar from the

theory of Brownian motion87 (see Section 3.6), which is a linear equation

for the distribution function.88 A more appropriate terminology would be

to refer to Eq. 3.24 or 3.25 as equations of the Landau type.

3.3.2 E1 The Balescu-Lenard Equation [1 In plasma physics it is occa-

sionally important to take into account the effects of plasma waves on

short-range collisions (i.e., “wave-particle” interactions). This can be ac-

complished to a degree by using a generalized Fokker-Planck collision

model first derived using statistical mechanics arguments by Balescul'l9 and

Lenard:90

an __ __ a ' 3 , I o y I _ a—n :

(E)coll— 3v v QBL(V,V) [ 8v n(v) n(v) av! _'JBL(nrn)

where now

(2103",,Von-Wm2

kk » -

' =_ 3 _ e - a '

QBL(v’v)— fd k k 8(k v k v) |D+(__k,ik,v)|
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THE FOKKER-PLANCK (LANDAU) EQUATION 1:] 187

17(k) is the Fourier transform of the interaction potential [in the case of

Coulomb interactions, V(k)= e2/k2], and where D*(— k,ik -v) is the limit

as z—rik-v of the plasma dielectric function

lino/Bu

z + iku

ore; 51- 4 wdu

() ~,.,,f_w

The Balescu-Lenard collision term can be shown to be the first order

correction to the Vlasov equation in an expansion in the plasma parameter,

e= 1/n>\,3,.89 It no longer contains the characteristic Coulomb logarithmic

divergence at small k, but unfortunately this is replaced by a new diver-

gence at large k. This divergence can be patched up by taking somewhat

more care in the short-range treatment of the Coulomb interactions, and

this leads to a three—component collision term containing the Balescu-

Lenard, Boltzmann, and Fokker-Planck forms. But this more complex

kinetic equation has been only of formal interest to date?"92

3.3.3 [1 Properties E1 Both the Fokker-Planck-Landau and Balescu-

Lenard collision terms are nonlinear. Nevertheless a few general properties

of these collision operators can be demonstrated.“ For convenience, we

write both terms in the form

an __8. 3, ,_0n,_ (E)COII— 3V ~[d0Q(v’v)(0vn "w

and consider only the homogeneous problem for which the transport

equation reduces to the form

5’, so)

an a

0!. = _ 8v

First we note that both the Fokker-Planck-Landau and Balescu-Lenard

collision terms exhibit the property that

f d3v¢1(v)(%'71)00"= — f (1301.0) 8", so) =9 (327)

where 1]., are the collision invariants: m,mv, and mvz/ 2. To demonstrate

each of these, note first

fd’6%-$(n)=0
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188 1:] COLLISION PHENOMENA IN PARTTCLE TRANSPORT

Next, we calculate

3 8n 8n’

_ 3 _. = 3 = 3 3 I t . _ '_ _

fdvvav #(n) fdvfln) fdvfdvQ(v,v)(avn new)

but since Q(v,v')=Q(v’,v), this also vanishes. Finally

an ,_ av" "av:

= éfd3vfdav’(v—v’)-Q(v,v’)-(% n’— n%)

—fd3v%2%-§.(n)=fd3vfd3v’v-Q(v,v')'(

But from the form of Q(v,v’) it is evident that v-Q(v,v')=v'-Q(v,v’) so that

this term vanishes as well. The property (3.27) is particularly important

because it implies that the moments of the Fokker-Planck-Landau or

Balescu-Lenard equations will yield the correct hydrodynamics equations

consistent with conservation of mass, momentum, and kinetic energy.

Next one can demonstrate that both these collision terms exhibit an

H-theorem property, dH/dt < 0, where we recall

H(t)Efd3rfd3vn(r,v,t)lnn(r,v,t)

(For a detailed demonstration of this property, see, e.g., Montgomery and

Tidmanf“) Finally, one can demonstrate that dH/dt=0 if and only if n(v)

is the Maxwell-Boltzmann distribution, so that both collision terms yield

the proper equilibrium behavior.

The Fokker-Planck-Landau equation has come to play a very important

role in a variety of plasma physics calculations. It is routinely used to

calculate transport coefficients characterizing collision processes in plas-

mas. It is even implemented in computer codes that calculate the plasma

phase space density in plasma devices (e.g., controlled fusion systems).

In sharp contrast, there has been little application of the Balescu-Lenard

equation, and in fact in the applications that have been attempted, it is

usually found that the Fokker-Planck-Landau equation gives comparable

results. Certainly the theory of the Balescu-Lenard equation, in either its

nonlinear or linearized form, is in a very primitive stage compared to that

of the Fokker-Planck-Landau equation.

3.4 E! COLLISIONLESS TRANSPORT WITH SELF-CONSISTENT

FIELDS: THE VLASOV EQUATION E] A wealth of various types of

transport phenomena arise in plasma physics. Most studies of such

processes ignore short-range Coulomb encounters entirely82 and include
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COLLISIONLESS TRANSPORT: THE VLASOV EQUATION l] 189

only the long-range interactions among large numbers of particles by using

a self-consistent treatment of the force term in

an an F an

E-HHE-F m.8v _0

To be more precise, we restrict our attention to uniform, field-free plasmas

that can be described by the Vlasov-Maxwell equations in the electrostatic

approximation

an an

E +v' 8r

8n_

8v-

+11) 0

m

gr -E=4'rrqfd3v[n(r,v,t) — n0(v)]

If we denote the interaction potential between particles as V(r), we can

combine these two equations to write an alternative form of the Vlasov

equation as follows:

an an _i

a a

. 3 / 3 r r I r .

——at +v 8r fd r fd 0 —ar V(|r—r|)n(r,v,t) av n(r,v,t)—0

The Vlasov equation is deceptively simple looking. Its nonlinear struc-

ture gives rise to many enormously complex solutions. Indeed, most

theoretical research in plasma physics utilizes the Vlasov equation as the

accepted model of the plasma state.

The Vlasov equation is time reversible (invariant under the transforma-

tion v—>—v, r—->r, t—> — t). It does not contain dissipative terms such as the

collision term, which will force solutions asymptotically to the equilibrium

distribution n0(v) for long times, as with the Boltzmann or Fokker-Planck

equations, for example.

As with other types of nonlinear transport processes, we can linearize

the Vlasov equation by assuming small disturbances from some known

solution.93 In this case we first note that any solution n0(v) that is

independent of space and time is an equilibrium solution of the Vlasov

equation. Hence we linearize about an arbitrary uniform distribution that

also has the property that it does not yield a zeroth order electric field:

n(r,v,t)=no(v)+"103101), l|"1||<<||"0|l

If we now substitute this into the Vlasov-Maxwell equation and note
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190 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

E0= 0, we find

an, 8nl q 8n0 _ q an,

W“ 8r +215‘ Bv— mEl 8v

6

8r -E|=4-rrqfd3vn|(v)

We linearize this equation by neglecting the second order term on the

right-hand side to arrive at the linearized Vlasov equation

%, an‘

at v 8r

an, 8 _ 3

av -0, E El—4'rrqfd vn](v)

+113,-

m

Chapter 5 develops in some detail the application of this equation to the

study of wave propagation in plasmas. We also study schemes that can be

utilized to attack the more general nonlinear form of the Vlasov equation.

3.5 E] MODERN DEVELOPMENTS IN THE DERIVATION OF

TRANSPORT EQUATIONS 1] Thus far we have confined our atten-

tion to the collision terms of the more familiar types, used to describe

particle transport processes. However the field of nonequilibrium statistical

mechanics has recently experienced a flurry of activity concerned with the

derivation of new forms of transport or kinetic equations that possess the

capability of describing dense many body systems (such as liquids or

plasmas) or systems that exhibit highly nonequilibrium behavior (e.g.,

turbulence). Such modern developments have provided a far better under-

standing of the range of validity of the more traditional transport equa-

tions such as the Boltzmann or Fokker-Planck equation. Therefore it seems

appropriate to include in a treatise on transport theory some discussion of

modern developments in kinetic theory that are leading to new forms of

the transport equation.

As noted in Chapter 1, there are almost as many approaches to the

derivation of transport or kinetic equations as there are investigators in this

field of nonequilibrium statistical mechanics. All such approaches eventu-

ally converge when they introduce approximations by perforrning a per-

turbation expansion (possibly to infinite order by way of renormalization

methods) in a suitable parameter such as density or interaction strength.

We therefore exercise a personal preference and approach this topic using

the very powerful and versatile theory of generalized Brownian motion

developed by Mori,” Zwanzig,95 Kawasaki,96 and others.97

In this theory the projection operator methods of Zwanzig are used to

recast exact microscopic equations of motion characterizing a many body
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MODERN DEVELOPMENTS El 191

system into a form very similar to that of the classical Langevin equation

familiar from the theory of Brownian motion. Since this “generalized

Langevin equation” is merely an identity with the equations of motion, it is

still quite exact and contains all the information (and complexity) of the

microscopic particle dynamics. Hence this equation appears at first to be a

curiosity of formal interest only. However the generalized Langevin equa-

tion has proved itself to be a very useful framework on which to base

approximate theories of many body systems.

This section briefly surveys the foundations and several typical applica-

tions of the generalized Langevin method to the study of linear transport

processes and equilibrium time correlation functions. Then we turn our

attention to recent attempts to extend the method to the description of

nonlinear processes and highly nonequilibrium states. This survey is not

intended to be complete, but rather to illustrate how modern methods in

statistical mechanics can be utilized to develop generalized forms of

transport or kinetic equations. It will also serve to introduce the reader to

the generalized forms of the more familiar transport equations (e.g.,

Boltzmann, Fokker-Planck, or Balescu-Lenard equations).

3.5.1 El General Derivation El Certainly one of the most familiar prob-

lems in statistical mechanics involves the fluctuating motion of a Brownian

particle in a background medium (a “bath” of background particles).98 For

example, one might consider the motion of a macroscopic test particle

through a molecular fluid, or the motion of a neutron through a crystalline

lattice. This problem is usually introduced by postulating that the random

fluctuations in the velocity of the test particle v(t) that arise from micro-

scopic collision events with bath particles can be modeled by adding a

random force term R(t) to the phenomenological, deterministic equation

for v(t) (see Figure 3.9)

"159 +myv(t)=R(t)

dt

(We restrict ourselves to one-dimensional motion for the moment, to avoid

vector notation.) Here, m is the mass of the Brownian particle, and y is the

friction coefficient characterizing the dissipative frictional forces on the

test particle due to the bath. This technique of modeling microscopic

phenomena by adding random force terms to the deterministic equation

describing a macroscopic process is known as the Langevin method. The

corresponding equation for the fluctuating variable is then referred to as

the Langevin equation.
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192 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

Fig. 3.9 I] Brownian motion of a test particle through a background medium (a

“bath’9)-

In the traditional Langevin approach one restricts the statistical nature

of the random force by demanding that it satisfy several constraints:

i <R(t)> = 0.

ii <R(t) 0(t’)> = 0, t > t’ (causality).

iii <R(t) R(t’)>~8(t — t’) (Markov behavior).

where < ) denotes an average over the nonequilibrium ensemble of inte-

rest. (Note here that conditions i, ii, and iii actually represent restrictions

on the natures of both the random force and the ensemble itself.) An

additional feature of the classical Langevin equation is a relation between

the equilibrium average < >eq of the random force correlation function and

the dissipation or transport coefficient 7. Such a relation is known as the

fluctuation-dissipation theorem, and it can be written either as

<R(1)R(r>>..=2(%)8(t-o

OI‘

y=(%)fowdt<R(to)R(to+t)>eq (328)

The success of the Langevin method in statistical physics provided a

strong motivation to generalize the theory by developing its microscopic

counterpart, working directly from the equations of motion for the

Brownian particle and the individual bath particles.99 It was recognized
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MODERN DEVELOPMENTS [I 193

quite early that such a generalized theory of Brownian motion would have

to allow for non-Markovian behavior, for example, by allowing the friction

coefficient to become time dependent. Although a number of fundamental

contributions to this theory have been made (notably the work of

Kirkwood'w), we confine our attention to the schemes that proceed by

recasting the equations of motion into the form of exact (microscopic)

Langevin-like equations.

The first major contribution in this direction was due to Zwanzig,95 who

utilized projection operator methods to arrive at a generalized Langevin

equation that assumed a non-Markovian form

"1% +mf0'd¢y(.)v(¢-T)=R(1) (3.29)

[Actually, Zwanzig obtained a very similar exact equation for the time

correlation function <o(0) o(t)>eq, but we generalize his results a bit for the

purposes of this discussion] Moreover, he provided explicit (albeit formal)

microscopic expressions for the generalized transport coefficient y->y(r)

and the random force term R(t).

Zwanzig’s projection operator methods have been extended and refined

by Mori”:lol into a very elegant theory of generalized Brownian motion

capable of describing the dynamics of any many body system. Mori’s

generalized Langevin method represents an exact, microscopic counterpart

to the original phenomenological, macroscopic Langevin method, which has

proved so useful in the study of random processes. Mori began by

considering the equation of motion for a vector a(t) whose components

aj(t) are dynamical variables of the coordinates (xl,...,xN; vl,...,vN) of a

many particle system (i.e., the “Heisenberg form” of Liouville’s equation):

da _

E —1La(t) (3.30)

Here, the equilibrium values of the variables have been subtracted for

convenience [i.e., aj(t)= A j(t) — (A j>eq], so that aj-(t) represents a fluctuation

from equilibrium. By using projection operator methods (see Appendix D),

Mori was able to transform this equation into a form

% — ifl-a(')+ f0'dr<1>(r)'a(t~ T)=f(1) (3.31)

which is somewhat similar in appearance to the Langevin equation familiar

from the stochastic theory of Brownian motion. However unlike the

Langevin equation, Eq. 3.31 is an exact equation for the dynamical
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194 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

variable a(t), hence is equivalent to the equation of motion (3.30) for the

many particle system.

The terms in this “generalized Langevin equation” are given explicitly in

terms of equilibrium ensemble averages as

it} E <aa*>cq- <aa*),,_q' “frequency matrix” (3.32)

<p( t) E <f( t)f‘(0) >eq-<aa“>e_q' “damping or memory matrix” (3.33)

f(t) Ee'l‘I ' P)'“i(l — P)La “random force” (3.34)

where <~ ~ - >eq denotes an average over the equilibrium canonical ensemble

pcq = exp( — ,BH)/Z,B E l/kT; a=a(0); a* is the row vector adjoint to a;

and P is a projection operator defined by its action on an arbitrary

dynamical variable vector G as

PG E (Ga‘ >eq~<aa*)e‘q‘~a

The matrix (aa*>e_q' is the inverse of the static correlation matrix <aa*>cqE

[<a,-aj*>eq]. Since we later find that the damping matrix tp(t) will give rise to

dissipative processes, Eq. 3.33 can be regarded as a generalization of the

fluctuation-dissipation theorem Eq. 3.28.

Of what use is this rather formidable mass of definitions? Let us proceed

to demonstrate how the generalized Langevin equation can be applied

rather easily to study equilibrium time correlations among variables in the

set a or to obtain equations of motion (e.g., transport equations) for the

nonequilibrium ensemble averaged components of a.

To calculate equilibrium time correlation functions, one begins by

noting that

<f(t)a* >,q =0, t > 0

(i.e., the random force is “orthogonal” to the dynamical variables a).

Therefore by multiplying Eq. 3.31 by a*-<aa*>e‘q' from the right and

averaging, we can derive an equation for the correlation matrix

C0) 5 <80)?‘ >=q'<aa*>._q‘

which takes the form

d , ' I

7c(r)-1tI-c(1)+ f d'1'(p(7')'C(l—T)=O (3.35)

l 0

Hence the generalized Langevin method can be used to obtain an exact
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equation of motion for equilibrium—averaged time correlation functions.

Such time correlation functions are of major importance in the study of

many body systems.'02 In particular, most experimental techniques for

investigating the microscopic dynamics of dense systems (e.g., neutronI03

or light scattering“) measure such time correlation functions directly.

Moreover, the transport coefficients related to the linear response of a

system to a perturbation can be expressed in terms of such time correlation

functions. As we will see, the generalized Langevin equation for C(t)

greatly facilitates the study of equilibrium-time correlation functions and

has become an extremely powerful tool in statistical mechanics.

Suppose we wish instead to follow the traditional Langevin approach

and average the generalized Langevin equation (3.31) over a non-

equilibrium ensemble p(I‘,0) characterizing the initial state of the system in

an attempt to arrive at a “transport equation” for the average <a(t)>E

<a(t)>p(o). Here we have for the moment adopted the customary terminol-

ogy by referring to closed equations for the average motion <a(t)> as

transport equations. We can also define transport coefficients as the

coefficients of the linear terms in <a(t)> in such equations (recognizing that

in more general situations, transport equations are nonlinear). Then the

average of the generalized Langevin equation yields:

%<a(r>>-m-<a(r>>+ f’dT<1><v-<a<t—o>=<rm> 0-36)

0

At this point, however, we notice one very important difference from the

phenomenological Langevin theory. In the classical theory, the average of

the random force over an arbitrary ensemble is assumed to vanish, <R(t)>

=0. However in the microscopic (and exact) generalized Langevin theory,

<f(t)> is not zero in general [although because we have chosen to work with

fluctuations a=A—<A)cq, (f(t)>cq=0] hence, strictly speaking, Eq. 3.31 is

not a true Langevin equation.

Mori" proposed the following scheme for eliminating the random force

term: in any experimental situation, we usually are given only the initial

values of the macroscopic or averaged variables, <a(0)>Eao. Since this

does not uniquely determine the initial ensemble p(0), Mon' suggested that

we choose p(0) to be the equilibrium ensemble, established subject to

constraints that yield the correct initial values a0. Such a constrained

ensemble is given by

p.=z—'exp[—B(H—a*-b)]

The conjugate parameters b are then chosen such that the proper initial
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196 I] COLLISION PHENOMENA IN PARTICLE TRANSPORT

conditions on the averages are satisfied:

<a(9)>.E fdrp.(r)a(r)=a6

(For t>0, one removes the constraints and allows the system to evolve

freely in time, of course.) Now suppose that the initial values :10 are small;

that is, the initial state of the system is close to equilibrium. Then b must

be similarly small; hence we can expand p0 and retain only linear terms

PC ; peq(l + By‘ .b)

To this order, Mori then notes that

“(0%; <f(l)>=q+B<f(1)a*>=q'b=0

Hence in the linear approximation of small initial departures from

equilibrium, the average of the random force term vanishes, and we arrive

at a linearized (but otherwise exact) transport law

%<a<0>.-111-<a<0>.+ L'dr<1>(r)'<a(t—T)>6=0 (3.31)

3.5.2 [I Choice of Dynamical Variable Sets [1 Since Eqs. 3.35 and 3.37

are still exact, hence only formal identities with the equations of motion,

one must eventually resort to approximation to obtain useful results. The

frequency matrix Q can usually be calculated explicitly in terms of static

quantities. However the damping matrix <p(t) requires the study of the

“modified” propagator exp[it(l -— P)L] which, in turn, would involve solv-

ing the many body problem directly. The attractive feature of equations

such as Eq. 3.31, which are generated by projection operator techniques, is

that the “damping” or “memory” terms are quite susceptible to approxi-

mation or modeling. That is, the generalized Langevin equation is of value

primarily because it reexpresses the quantities of interest (e.g., time correla-

tion functions) in forms involving damping terms, which can then be easily

approximated.

1n Mori’s formalism“ the choice of the set of dynamical variables a was

essentially arbitrary. Different choices of a will lead to different, but exact,

descriptions of the system under consideration. However a given ap-

proximation of the damping term will yield results that may vary consider-

ably, depending on the choice that is made for 11. Usually by increasing the

number of components in the set a, the description of the system can be

improved within the framework of a given approximation.
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We can illustrate this by considering three different levels of sets of

dynamical variables.

i Single particle, space-independent variables. The simplest level of

description could be illustrated by choosing a to be the velocity char-

acterizing a test particle, say a=vl. Then the generalized Langevin equa-

tion reduces immediately to Zwanzig’s95 generalization of the Langevin

equation characterizing Brownian motions, Eq. 3.29. To improve on this

description, one could go to a multicomponent set in which the aj are

chosen as polynomials in velocity of order j.'°5

ii Microscopic densities. A second choice of dynamical variable a

utilizes microscopic densities in configuration space that are the analogues

to the macroscopic hydrodynamic variables. Examples include mass den-

sity, p(x,t)=Ej-"_,m8(x—xj(t)), momentum density, and energy density.

Akcasu and DanielsI06 have used such sets of dynamical variables to

develop an exact generalization of the linearized hydrodynamics equations

that involve wavelength- and frequency-dependent transport coefficients.

This theory has been quite successful in describing time correlation func-

tions in equilibrium liquids.'°6"°9

iii Microscopic phase space densities. On a more detailed level, one can

use the generalized Langevin method to develop a kinetic theory capable

of describing fluctuations in the microscopic phase space densityllo

g(x,v,t)E €16[x—xj(t)]8[v—vj(t)]

For convenience, we work with the Fourier transform of such variables in

configuration space, for example,

N

g(k,v,t)= 2 e“"""(')8[v_vj(l)l

j=l

There are essentially two ensemble averages involving g(k, v, t) that are of

interest in the study of many particle systems. Of course, one such quantity '

would be the one particle distribution function

Fr(k,v,t)=<g(k,v,l)>

defined as the average of g(k, v, t) over some initial nonequilibrium ensem-

ble p(0). Of comparable significance, however, is the time correlation

function

C(kmvtoi<g(k.v.r)g*(k.v’.0)>= i i e"'l*/""*'18[vwtol'div—nl

j=li=l
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I” E] COLLISION PHENOMENA IN PARTICLE TRANSPORT

By taking suitable moments in v, one can easily verify that these two

quantities can be used to generate any of the hydrodynamic variables or

time correlation functions of interest. For example, the Van Hove density

correlation function that arises in the analysis of radiation scattering

experiments is given quite simply by

G(k,t)= fd3vfd3v’C(k,v,v’,t)

To apply the generalized Langevin method to the calculation of these

phase space quantities, we choose a(t) to be a “vector” whose “com-

ponents”aj=a(v, t) are indexed by a continuous parameter v and are

defined by

a(v, t) Edg(k, v, t) = N e'1""1(')8[v — vj(t)] — n8(k)M(v)

_]=I

where it has been noted that <g(k,v,t)>cq=n8(k)M(v), n being the

equilibrium number density, and

The extension of the generalized Langevin equation to such a continuous

representation is straightforward:

g? — ifd3v’ 12(v, v’)a(v’,t)+ foldrfdsv’rph, v’,'r)a(v’,t—'r) =f(v, t)

(3.38)

Here one can calculate

iSl(v,v’) = ik'v8(v — v’) — ik~vM(v)nc(k)

<P(v,v','r) = [ "M091 _ l<J"(v',0)1""(‘ _ P)Lf(Y10)>=q

N F. a N

f(v,0)= 2 e‘h‘i—J- 8(v—vj)+ik-vM(v)nc(k) 2 e“‘'"1

F] m 8v j=l

where c(k)=h(k)/[l +nh(k)], and h(k) is the Fourier transform of

[g(r)— 1], g(r) being the static pair correlation function (presumed to be

known).
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Hence we can now average Eq. 3.38 over the constrained ensemble p(0)

to find a kinetic equation for F1(k, v, t):

3F

a—t' —ik'vFl +ik-vM(v)nc(k)fd30’Fl(k,v’, t)

+ L'd-rfdav’tflvfl’,'r)Fl(k,v’,t— 1')=<f(v,t)>p(0) (3.39)

This is still a perfectly exact equation—hence it must be regarded as only a

formal identity with the equations of motion. The complexities of the

many body problem now appear in the calculation of the damping kernel

(p(v, v’, t) and the “random force” ( f (v, t)>p(0). In the linear approximation

of small departures of the constrained initial ensemble from equilibrium

(“linear response theory”), we again note that ( f (v, t)>p(o) vanishes, leaving

us with “only” the calculation of (p(v,v', t). In the more general case of

arbitrary departures from equilibrium, < f (v, t)>p(0) will introduce nonlinear

terms in F l(k, v, t) into the kinetic equation.

In a similar manner, one can obtain a kinetic equation for C(k,v,v”,t)

by multiplying by 8g*(k,v”,0) and averaging over the equilibrium ensem-

ble

5%?— -— 'k-vC+ik-vM(v)nc(k)fd30’C(k,v’,v",t)

+ fId'rfdso'tflv,v’,'r)C(k,v',v",t—'r)=0 (3.40)

0

where we have noted <f(v,t)8g"(k,v",0)>°q=0. Hence we find that the

time correlation function C(k,v,v’,t) obeys a kinetic equation identical to

the linearized kinetic equation for the single particle distribution function

F ](k, v, t).'"‘"2 It should be stressed, however, that Eq. 3.40 is an exact

equation for C(k,v, v’, t) in which no linearization assumption was neces-

sary. Hence Eq. 3.40 is of only formal significance until we introduce

approximations sufficient to obtain an explicit and tractable form for the

clamping kernel q>(v, v’, t).

It is appropriate to make some general comments about these exact

kinetic equations: first notice that these kinetic equations contain the

characteristic transport or streaming term

— ik'vF(k,v,t)—>v-VF(x,v,t)

Hence we can regard the remaining terms as characterizing collisions or

interactions. If we assume that nc(k) = BVe“(k) is an effective potential, the
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200 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

term

ik-vM(v)nc(k)fd31>’F(k,v’, t)

is just the “self-consistent field” term that appears in the linearized Vlasov

equation familiar from plasma physics. The damping term also accounts

for interactions among the particles. As we see momentarily, under certain

approximations it reduces to either the Boltzmann collision term or the

Fokker-Planck collision term. However, in its present exact form, the

damping term corresponds to a collision operator that is nonlocal in time

(“non-Markovian”) and involves spatial gradients (since the damping

kernel is k-dependent).

Let us rewrite the exact kinetic equation characterizing the phase space

density—time correlation function (after Laplace transforming in time) in a

slightly different form:

(s — ik~v) C(k, v, v’,s) — fd30”2(k, v, v",s) C(k, v", v’,s) = C(k, v,v',0)

where

C(k, v, v’, 0) = n8(v — v’) M(v') + n2M(v)M(v’)h(k)

is the initial value of C (k, v, v’, t), and

2(k, v, v’, s) E Z(‘)(k, v) + Z(”)(k, v, v’,s) = — ik-vM(v)nc(k) — (p(k, v, v’, s)

where 2“) and 2(6) correspond to the static and dynamic components of

the “memory” kernel 2, respectively. This kinetic equation has been

obtained in an independent fashion by a number of investigators (includ-

ing Akcasu and Duderstadt;"° Lebowitz, Percus, and Sykes;I12 Forster

and Martin;“3 Mazenkof“ Gross;“5 and probably many others), using a

variety of approaches.

3.5.3 [1 Approximation Schemes E1 Of course in the generalized

Langevin equation formalism, one has merely succeeded in disguising the

complexities of the many body problem by deferring them to the calcula-

tion of the frequency matrix Q and damping matrix <p(t). Fortunately,

since the frequency matrix involves a static equilibrium correlation func-

tion, it can usually be readily calculated in terms of equilibrium quantities.

For example, it is frequently possible to use symmetries and identities to

simplify $2. One common approach is to use static information [e.g., the
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pair correlation function g(r)] from molecular dynamics computer simula-

tions to assist in the calculation of this quantity.

The memory or damping matrix <p(t) is a far more complicated beast,

since it involves the modified time propagator exp[it(1 — P)L] dynamics. It

is at this point that one introduces approximations into the theory. Such

approximations usually can be classified as one of several types:

i Simply set rp(t)= 0. We will see that this is tantamount to a short time

approximation.

ii If ip(t) damps out on a time scale much shorter than a(t), one can

replace the memory term by its Markovian limit:

lo'dauo-av—r)*[l,wd""(")la(0§7'a(t)

iii Perturbation theory.

iv Guessing or modeling the form of <p(t).

To illustrate each of these approximation schemes, we consider approxima-

tions of the memory or generalized collision kernel <p(v,v', t) [or

E(‘)(k,v,v’,t)], which appears in the exact kinetic equations (3.39) and

(3.40). Since in the linear approximation of small initial departures from

equilibrium, the kinetic equations for F1(k, v, t) and C(k,v,v”,t) are identi-

cal, we consider only the latter equation (3.40) in this discussion.

i Vlasovlike approximations. Of course the crudest approximation

would be to simply set q>(v,v’,r)=0. Interestingly enough, the resulting

approximate kinetic equation

Zia—f - ik'vC(k, v, v’, r)+ 11. -vM(v)nc(k) f (136' C(k,v”,v’t)=0 (3.41)

is just the Vlasovlike equation first derived by ZwanzigH6 and later applied

to the study of neutron scattering in liquids by Nelkin and

Ranganathan.H7 If one treats static correlations only to lowest order in the

interaction potential V(r), then c(k)~,BV(k), and Eq. 3.41 reduces to the

standard linearized Vlasov equation familiar from plasma physics. Such

Vlasov descriptions are frequently adequate for plasmas in which the

number of particles in a Debye sphere, nA,3,<<1 (a limit we comment on

further in a moment). However Eq. 3.41 is capable of describing only the

very short time (high frequency) behavior of a liquid or dense gas.

ii Weak coupling approximations. A somewhat less trivial approxima-

tion is obtained by calculating ip(v, v’, t) to lowest order in the interaction
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202 E] COLLISION PHENOMENA IN PARTTCLE TRANSPORT

strength l\=0( V). If one notes that

<f*(0)e"" _ P’Lf(0)> = <l‘(0)e"Lf7'(0)> + 003)

where

N

L0: _' v1" 8x.

1=l I

then a straightforward calculationllo yields the kinetic equation (Laplace

transformed with respect to time t) to 003) as

(s — ik-v)C+ ik-vM(v)nc(k)Id3v’ C(k,v',v",s) = C(k,v,v”,0)

+nfd3v’f(2d—;K)3[Vz(x)S(k)rc-%rc-5%8(v—v’)

M (v) C (k, v’,v”,s)

— I/(k—~>V<~>s<~>~-%(k—~>%] ,_,.(k_,,).,_,-,..,.

(3.42)

This equation is still non-Markovian and in fact is still reversible. It was

first derived by Akcasu and Duderstadtllo and has been studied in consi-

derable detail by Forster and Martin,"3 who have also applied it to the

calculation of transport coefficients.

If we pass to the Markovian limit in which A—>0,t—>oo,x—>oo in such a

way that fit and Azx remain finite, we find that Eq. 3.42 reduces to the

more familiar irreversible form

iii—f _ 11. -vC+ ik-vM(v)nc(k) f .130’ C(k, v'.v".r)

—fdsv’ffinS(1c)V2(1<)rc-%w8[rc-(v—v')]rc-(%—£7)

[ C (k, v’, v”, t)M(v) + C (k, v, v”, t)M(v’)] = 0 (3.43)

In the absense of initial correlations, c(k)=0 and S(k)=l+nh(k)=l.

Then Eq. 3.43 reduces to the Fokker-Planck equation derived in standard

weak coupling theories of many body systems.118 In this sense, then, Eq.

3.42 can be regarded as a “generalized Fokker-Planck” equation.

iii Low density approximations. In a very similar manner, one can

expand the propagator in the memory kernel in a power series in system
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density and retain only lowest order terms to arrive at a low density kinetic

equation that is valid for arbitrary frequency or wavelength. To lowest

order, the memory kernel becomes

I ; — a a _ a2 2

¢(v’v’s)="[M(v)l '(%)mwfd39fd"fd’e "‘ *"’

>< {g(ryfi—Ir/ [e_"""/26(v—a—q)—e“‘"/28(v—a+q)]

X [s— 111-6- iL(q,r)] _l%e"‘"/28(v—a—q)} + 0(112)

This generalization of the linearized Boltzmann equation, which is correct

for all k,w, was first derived using diagrammatic methods by Mazenko'“

It has since been rederived by Boleyll9 and Akcasu'20 using somewhat

simpler methods.

iv General comments on perturbation methods. Of course it is possible to

continue this game of expanding the memory kernel in various perturba-

tion parameters. For example, the natural parameter to use in plasma

physics would be the inverse of the number of particles in a Debye sphere,

eE(n}\3)_ '. The resulting kinetic equation would then represent a generali-

zaltziclinzsof the linearized Balescu-Lenard equation to arbitrary k and

w. ‘I

To facilitate such expansions, one can apply a useful identity due to

Akcasu:I20

-1

q>(v,v’,s)= q)0(v,v',s) + fd o”<p(v,v”,s)[s— ik-v—Z(‘)fd3o"] (p0(v”,v’,s)

(3.44)

where <p0(v,v’,s) is identical to <p(v,v’,s) except that the modified propaga-

tor [s—i(l—P)L]_l is replaced by the true propagator [s—iL]". Since

perturbation expansions of the true propagator usually are far easier to

obtain, one can use this to generate a perturbation expansion for <p0(v,v’,s),

then iterate using Eq. 3.44 to build up a perturbation expansion for

<p(v,v',s).

Mazenko'z“ has dramatically extended this approach to achieve a renor-

malized kinetic theory of time correlation functions. To facilitate this, he

has reexpressed the memory kernel in terms of an effective two-particle

interaction

q>(12)nM(v,)= -fd3fd§fd4fdZV(1;3§)G(3§;4Z)V(4Z;2)

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



204 U COLLISION PHENOMENA IN PARTICLE TRANSPORT

where 1=(x|,v,),..., V(l;33) is an effective interaction potential, and

G(33;44) is the time correlation function characterizing a two-particle

field. Mazenko has demonstrated that V and G are quite amenable to

approximation (e.g., by way of cluster or cumulant expansions). In this

way he has derived a renorrnalized generalized Boltzmann equation (in its

linearized form, of course), including not only so-called ring terms (corre-

sponding to recollision events) and mode-mode coupling terms, but addi-

tional cross terms as well.

v Modeled kinetic equations In the preceding sections we have demon-

strated that the generalized Langevin kinetic equation represents an ideal

starting point to apply standard perturbation methods in order to generate

approximate kinetic equations. Such calculations are quite straightforward

and do not lead to the secular divergenceslzs’m encountered by perturba-

tion schemes based on the Liouville equation or the BBGKY hierarchy.

Furthermore, it is easy to generate higher order correction terms to the

more familiar low order equations (Vlasov, Fokker-Planck, or Boltzmann

equations).

The integrodifferential equations generated by such perturbation

analyses are very appealing from a physicist’s point of view because they

represent obvious generalizations of well-known equations. However they

are quite repugnant mathematically because they have very complicated

collision operators. To circumvent these difficulties, we can adopt a

somewhat different approach by attempting to guess or model the form of

the damping kernel <p(v, v’, t) in a spirit very similar to that used in more

traditional kinetic theory models.l27

One such model assumes that the kernel is a rapidly decaying function

of time, and in fact can be modeled by a simple exponential time decay

<p(v, v’, t) = tp(v, v’, 0)e ‘am’ (3.45)

where the t=0 form of the kernel can be calculated exactly, while the

relaxation parameter n(k) is chosen to satisfy various constraints de-

manded by the known long- and short-time behavior of C(It,v,v’,l). The

model Eq. 3.45 is actually very closely related to the multiple time scale

approach of Bogoliubov in that we are assuming that the time correlation

functions involving the modified propagator [s — i(l — P)L]_1 decay much

more rapidly (on a “microscopic” time scale) than do time correlation

functions involving the direct propagator (s—iL)" (on a “kinetic” time

scale). Such assumptions are supported by molecular dynamics computer

experiments'zHw The use of such simple relaxation models of damping

functions is rather common in nonequilibrium statistical mechanicsm and

has frequently yielded excellent results.
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If we introduce such a model into the Laplace transformed kinetic

equation 3.40, we find the modeled kinetic equation132

(s— ik-v)C+ ik-vM(v)nc(k)fdsv'C(k,v’,v",s)

vM(v)

. . 3 I r I II

s+a(k) 61) fdvvC(k,v,v ,s)

_& a . a £31, ,, _ H

S+(X(k){ 8v 3v + m av v}c(kiv1v ,s)—C(k,v,v ,0)

where

69005 —'‘'‘’,',f.('‘) -(£—Z)D(k)

_ n 82V

d3R aRjz g(R)COSkI{38‘-Jv

=1 3 82V _@

o(0)_ BfdRaRjzg(R)- 3B

Fortunately this equation can be solved exactly for the density- and

current-time correlation functions. We can choose the relaxation parame-

ter a(k) by demanding that the s=0 behavior of the correlation functions

agrees with the k->0 limit given by conventional hydrodynamics and the

k—mo limit given by free gas behavior. Such a model predicts the behavior

observed in scattering and computer simulation experiments quite well. It

also happens (and this is the most important feature of the generalized

Langevin method) that the model is rather insensitive to the precise form

chosen for the relaxation parameter a(k). "2"” Evidently by using this

approach, we have managed to extract most of the relevant dynamical

information before having to make any modeling approximations.

A variety of alternative models are possible. Akcasu and LinneburI34

have developed a two-time relaxation model in which single particle and

collective phenomena are characterized by different relaxation parameters.

This allows them to extend the model into the region of small k and w

where a hydrodynamic description is more suitable—thereby making pos-

sible an analysis of light scattering experiments from gases.

One major shortcoming of the above mentioned models is that they are

isothermal in that although they conserve mass and momentum, they do
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206 [I COLLISION PHENOMENA IN PARTICLE TRANSPORT

not conserve energy. Forster and Jhonni'lt3 and Bergeron and Gross137

have extended these models by adding a new variable into Mori’s phase

space description corresponding to the total energy density. The resulting

model now conserves energy, therefore provides the correct hydrodynamic

behavior at small k and m. It can be adjusted to conserve as well the first

two sum rules, and in this sense it represents an extrapolation model

between the exact large k,w and small k,w regimes.

The flexibility of the generalized Langevin approach in describing non-

equilibrium behavior in many body systems is impressive. The method has

been applied to develop kinetic equation descriptions of neutron scattering

from liquids (both simple liquidsI06 such as argon and more complex

liquids such as liquid metals'”), light scattering from gases134 and gas

mixtures)” Thomson scattering from partiallyI39 and fully ionizedM0

plasmas, and the dynamics of dilute polymer solutions.""'143

3.5.4 El Limitations of the Generalized Langevin Method B The gener-

alized Langevin method has proved to be remarkably powerful and flexible

in facilitating studies of an enormous variety of interesting physical phe-

nomena. One can apply this method to select out of a many body problem

a reduced description of only the macroscopic variables of interest, thereby

extracting most of the relevant physics involved in the physical process

(e.g., static or equilibrium behavior, conservation laws, sum rules) before

resorting to approximation. In this sense, the generalized Langevin equa-

tion allows one to extract a priori the known information concerning a

process, then to bury one’s ignorance (i.e., the full complexities of the

many body dynamics) in terms that are relatively insensitive to approxima-

tion.

It should be noted, however, that our analysis to this point has been

confined to essentially linear transport processes. That is, we have applied

the generalized Langevin equation to the study of small disturbances in

systems close to thermodynamic equilibrium or to the calculation of

equilibrium-time correlation functions. Yet we know that many non-

equilibrium processes are strongly nonlineanm‘"I45 For example, the study

of the effects of nonlinear coupling of fluctuations on linear transport

processes and the concomitant renormalization of bare transport

coefficients has become a very lively topic in statistical mechanics during

recent years.“6 Yet another area of considerable interest involves the

calculation of time correlation functions characterizing nonstationary sys-

tems (e.g., light scattering from a slowly varying nonequilibrium plasma).

A somewhat more difficult task involves the microscopic derivation of

nonlinear transport equations. For example, how would one apply gener-
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alized Langevin methods to derive the nonlinear Boltzmann equation as a

low density limit? Or on a different level, could we derive the nonlinear

hydrodynamics equations in a spirit analogous to that used in deriving the

exact generalization of the linearized hydrodynamics equations?

It is of considerable interest to extend the generalized Langevin method

to the description of highly nonequilibrium behavior. It should first be

noted that the form of the generalized Langevin equation is certainly not

unique, and in fact, alternative forms of this equation are more appropriate

for the analysis of nonlinear processes. These alternative formulations

depend on how one defines the fluctuating force term f(t). For example,

MoriM7 has considered the following alternative forms of the generalized

Langevin equation (all of which are formal identities with the microscopic

equations of motion of a many body system):

i Original generalized Langevin equation?“

da

5 — 'II-a(t)+ L'd'r<p(r)'a(t— 1)=r(1) (3.46)

ii Frequency-modulated generalized Langevin equation:M7

% — ifl'=(t)+‘l'(r)-a(r) =g<t> (3.47)

iii Nonlinear generalized Langevin equation: “845°

da 1

; -v<a(t>>+ fo drqwu—o] -R(1) (3.48)

In each of these equations, the parameters [e.g., <p(t), ‘I'(t), or C] can be

expressed in terms of microscopic quantities (e.g., ensemble averages and

modified time propagators).

For example, Mori and FujisakaI48 have derived the nonlinear gener-

alized Langevin equation 3.48 by choosing the dynamic variable set a to be

the microscopic analogue of the probability density for the values a

assumed by a dynamical variable:

g(ot,t)=8[a(t)—a]

(thereby following an earlier theory developed by Zwanzig). A straight-

forward application of the generalized Langevin method then leads to a

microscopic “generalized master equation” for g(a, t). Then by taking the

first moment of this equation with respect to a, one arrives at the nonlinear

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

5
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



208 El COLLISION PHENOMENA IN PARTICLE TRANSPORT

generalized Langevin equation in the form of Eq. 3.48. A variety of other

approaches to deriving such nonlinear Langevin equations have been

studied, including mode-mode coupling and Fokker-Planck methods.

In spite of these various approaches, the mathematical complexity of

nonlinear Langevin equations presents a major difficulty in extensions of

the generalized Langevin method to nonlinear processes's' In the linear

theory, the major effort involves the derivation of the microscopic ana-

logue of the linear Langevin equation—that is, choosing a set of dynamical

variables {a,}, then calculating the static correlations in (I and approximat-

ing the damping or memory terms <p(t). Once the explicit form of the

generalized Langevin equation has been obtained, however, it is a simple

matter to solve this equation (using standard linear techniques such as

integral .transforms) to obtain either equilibrium-time correlation functions

or the linear behavior of ensemble averages.

In sharp contrast, the microscopic derivation of a generalized nonlinear

Langevin equation still leaves one with the rather formidable mathematical

task of solving this equation—or using the equation to generate nonlinear

transport equations for ensemble averages or time correlation functions.

To date most of the effort has involved a restricted study of the linearized

transport equations (i.e., renorrnalized transport equations) that arise from

such nonlinear Langevin equationsm'153 The more general problem of

nonlinear transport remains largely unexplored.

3.5.5 [1 Some Concluding Remarks El It has been our intention in this

section to embed the subject of transport theory within the more general

framework of classical nonequilibrium statistical mechanics and to de-

scribe one of the more recent approaches to the derivation of transport

(kinetic) equations for general many bodysystems. This approach used the

generalized Langevin method to derive exact (but formal) kinetic equations

for both distribution functions and time correlation functions of phase

space variables. By introducing approximations into these exact equations

by way of perturbation theory or modeling, one can obtain approximate

kinetic equations useful for the analysis of transport processes. Not only

can one obtain the more familiar transport equations (Vlasov, Boltzmann,

Fokker-Planck) and their corrections, but new kinetic equations more

suited to the description of dense, many particle systems, can be derived,

as well.

Such techniques can be readily extended to quantum mechanical calcu-

lations by introducing the Wigner-equivalent operators analogous to

g(x,v, t). Further investigation of nonequilibrium behavior is needed for the

analysis of highly nonequilibrium systems and nonlinear processes. Of
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course these schemes could be used to rederive the more familiar transport

equations for neutron diffusion or radiative transfer. However most cur-

rent work is devoted to the derivation and study of transport equations to

describe transport processes for which no adequate kinetic theory presently

exists (e.g., dense gases, liquids, plasmas).

What then is the role of the transport theorist in the study of such

transport processes? Perhaps a very limited role if he is concerned only

with the mathematical analysis of transport equations. As one can readily

see, most of the problems to which we have addressed ourselves in this

section are formulated as infinite medium initial value problems. Most

theories of transport processes in dense systems have yet to progress to the

point at which actual boundary value problems are the focus.

A more detailed mathematical analysis of the kinetic equations that have

been derived may tend to be frustrating until the validity of such equations

has been thoroughly established. Quite a bit of physics remains before the

mathematician can be allowed to take over.

However the mathematical knowledge and physical intuition of one who

is well versed in more classical transport theory would certainly be useful

in the study of these complicated physical and mathematical transport

problems. Furthermore, transport theorists should certainly keep abreast of

developments in kinetic theory and statistical mechanics, since their talents

are definitely needed at various stages of the analysis.

I] PROBLEMS [I

3.1 Consider the neutron transport equation under the assumptions of zero

absorption (Ea=0) and zero sources (s=0). Demonstrate that the only

equilibrium solution to this equation is the Maxwell-Boltzmann distribu-

tion.

3.2 See if you can repeat the “uniqueness” proof of Problem 3.1 for the

Boltzmann equation for gases (ignore the force term F =0).

3.3 Suppose that an absorber characterized by Ea(v)=Eg/v is suddenly

inserted uniformly throughout an infinite medium containing a well-

established Maxwell-Boltzmann distribution of neutrons. Show that the

total density of neutrons in the medium steadily decreases in time, but that

the neutron energy distribution, hence the effective neutron temperature,

does not change. Then discuss qualitatively the change in the energy

distribution you might expect for a non-l / v absorber.

3.4 Solve the infinite medium spectrum equation for the neutron flux

resulting from an arbitrary source S(E) using the synthetic kernel model

(ignore time dependence).
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3.5 The synthetic kernel model can also be used to study the time-

dependent thermalization of a neutron pulse injected into a moderator at

an energy E0. To this end, consider the initial value problem characterizing

an infinite medium subject to the initial condition ¢(E,0)=¢08(E—E0).

Solve this problem for ¢(E, t), assuming the synthetic scattering kernel

model and l /o absorption.

3.6 A useful model of electron transport through massive, elastic scatterers

is provided by a simple Fokker-Planck equation in angle

118—n=9-9—[(1-112)8—n]

Obtain a solution of this equation on a slab domain 0 (x < l with

inhomogeneous boundary conditions as an expansion in eigenfunctions of

the Sturm-Liouville equation. Demonstrate that far from the boundary,

n(x, 11)~A — 3al‘x + %l‘11, where A and T are constants. (See References 29

and 154 for assistance.)

3.7 Demonstrate that the Fermi-Dirac distribution is the equilibrium solu-

tion to the transport equation characterizing electron conduction in solids.

3.8 Verify the forms taken by the radiative transfer variables 1,, u,, u, q,

and P when the field is in black body equilibrium characterized by the

Planck distribution function B,(T).

3.9 Determine an expression for the radiant momentum density in terms

of 1,.

3.10 Determine the number of photons in a given volume V for an

equilibrium radiant energy field.

3.11 Can the photon transport equation be generalized to describe (i)

amplification of light in a lasing medium, (ii) reflection of light by a

mirror, (iii) photon transport through a narrow slit (i.e., diffraction), (iv)

photon transport through water? If so, how might you construct such

generalizations?

3.12 Derive an integral equation for steady-state photon transport in the

absence of scattering. To integrate the differential form of the transport

equation, introduce the optical depth. Specialize this equation to the case

in which the specific intensity is much less than the equilibrium field,

I,<< B,.

3.13 Demonstrate that the Vlasov equation is reversible. That is, if n(r, v, t)

is a solution, demonstrate that n(r, —v, — t) is also a solution. Then demon-

strate in a similar fashion that the Boltzmann and Fokker-Planck equa-

tions are irreversible.
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3.14 Prove that in a binary collision process, dsv d 3vl = dav'dllv'l by calcu-

lating the Jacobian of the transformation.

3.15 Demonstrate that the generalized Maxwell-Boltzmann distribution

containing an external potential ‘D is indeed an equilibrium solution of the

Boltzmann equation.

3.16 Verify the H-theorem for the linearized Boltzmann equation (3.20).

3.17 Multiply the Boltzmann equation by each of the collisional invariants

m, mv, and mo2 / 2 and integrate over velocity to obtain the transfer

equations characterizing the macroscopic counterparts to these quantities

(see Section 4.3 for assistance).

3.18 Demonstrate explicitly that the BGK model satisfies the collisional

invariant property I d 5v 41.1 (n, n) = 0.

3.19 Consider a homogeneous binary gas and define the H-function for

one of the components of the gas by

HA=fdsvnAlnnA

Demonstrate that this function need not necessarily decay monotonically

to equilibrium, and explain this result using physical arguments.

3.20 Provide the details in the derivation of the Fokker-Planck equation

(3.23). (Refer to Reference 84 for assistance.)

3.21 Explicitly demonstrate the equivalence between the Landau form

(3.24) and Rosenbluth form (Eq. 3.25) of the Fokker-Planck equation.

3.22 Verify the H-theorem for the Fokker-Planck equation in the Landau

form (assuming a homogeneous plasma).
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The Derivation of

Continuum Descriptions

from Transport Equations

In earlier chapters our primary concern has been with the solution of

transport equations using standard methods of mathematical analysis.

Unfortunately, it has become apparent that any direct attempt to solve

even linear transport equations very rapidly encounters depressingly severe

mathematical complexities for all but the simplest modeled problems (e.g.,

infinite media, one-speed, isotropic scattering). Certainly the more com-

plicated nonlinear transport equations are even further removed from

successful mathematical analysis and solution. . I

Therefore it is not surprising that a very important aspect of transport

theory involves the development of far simpler approximate descriptions,

which are more amenable to mathematical treatment. Perhaps the most

useful class of such approximate descriptions contains those that remove

the velocity dependence of the transport equation to replace it with a set of

approximate equations for field variables in configuration space r. Exam-

ples include the neutron diffusion equation and the equations of hydrody-

namics for a gas or liquid. These equations generally replace the particle

phase space density n(r,v, t) by field variables such as mass density p(r, t) or

temperature T(r, t). Therefore it is customary to refer to such approximate

equations as providing a “continuum” description (as opposed to a “par-

ticle” description) of the transport process.

Under certain conditions the solution n(r, v, t) to a transport equation

indeed approaches a form that can be directly related to a continuum or

hydrodynamic description. That is, under certain conditions the transport

process approaches a hydrodynamic limit. Our objective in this chapter is

to determine the precise form of such continuum descriptions and examine

their domain of validity by deriving them directly from transport equa-

trons.

4.1 [1 SOME GENERAL REMARKS El Let us begin by considering

our standard form for transport equations

an an F 8n (an)

coll

EH'E‘LE'av

(4.1)
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218 El _ CON'TINUUM DESCRIPTIONS

The most common procedure for obtaining continuum or hydrodynamic

descriptions begins by deriving equations for the macroscopic analogues of

conserved variables

‘E(r,t); fd3v\p,.(v)n(r,v,t)

where 41,- corresponds to a collisional invariant, that is,

\l’i(v,) + ‘lily/1): ‘l’i(v) + \l’i(v1)

for a collision process from (v’,v’l) to (v,v|). For “point” particles (i.e.,

those without structure), the natural collisional invariants correspond to

mass, momentum, and kinetic energy, \p,-=m,mv,mvz/2. To construct

moment or conservation equations for the \I',-(r,t), one merely multiplies

the transport equation (4.1) by each 42,- and integrates over v to find

an an F an an

3 3 , 3 , _ 3 I

fd viii—at +fd vipiv —al_ +fd vii/,- m av —fd v¢,( at) n (4.2)

We can simplify these equations a bit. First note that for any suitable

collision term (an/80m“

8n

fdsv 1l1.-(v)( E )m“ =0

(recall our demonstration of this feature for the Boltzmann equation in

Section 3.2.2). If, moreover, we assume that \l/l-(V) depends only on v, we

can extract the 8/8! and B/ar operators to write Eq. 4.2 in a form known

as Maxwell’s moments or transfer equation:l

8‘1/ 8

.- F 311/,- _

—a?'+ at 'N<V1‘l/i>—;N'< av >—0

where we define O by

<><>E [fd’vx(v)n(v)]lfd3vn(v)]_1=N_'fd3vx(v)n(v)

As we might have expected, these conservation equations do not form a

closed set for \II,-=N(¢,->, but rather they involve higher order moments

such as <Y\l/i>. To complete or close the set, one must introduce suitable

approximations. In a sense, these approximations are very similar in spirit

to those used to derive transport equations from the equations of particle
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DIFFUSION THEORY l] 219

Laws of mechanics

p(x,, v1, . . . , xN, vN, t)

Nonequilibrium statistical mechanics

Kinetic theory (transport theory)

n(r, v, t)

PIV expansion

Chapman—Enskog method

Continuum descriptions (hydrodynamics) p(r, t), u(r, t), Tlr, t)

Fig. 4.1 l] Successive “contractions” of the description of a many particle

system.

mechanics. One must “contract” the description of the many body system

from n(r, v, t) to a finite set of velocity moments ‘IQ-(r, t) (see Figure 4.1). We

examine how this contracted description can be obtained, both for linear

and nonlinear transport processes (i.e., both for self-diffusion and collec-

tive motions).

4.2 III DIFFUSION THEORY [I We begin by studying how a con-

tinuum description of self-diffusion processes can be obtained. Since the

prototype equation describing such processes is, in fact, just the neutron

transport equation

811.81

8t 8r

+ v2,n(r, v, t) = f d 3v’ v'ZS(v’—>v)n(r, v’, t) + s(r, v, t)

we use this notation and terminology throughout this section.

4.2.1 E1 The One-Speed Diffusion Equation [1 To simplify, let us initi-

ally restrict our attention to the one-speed transport equation, since it is

customary to introduce approximations in the angular dependence sepa-

rately from those in the energy dependence in neutron or photon trans-

port:

iii +§1-vq>+z.¢(r.rz.o= 1 411211144111. 111411114111)

(4.4)
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220 El CONTINUUM DESCRIPTIONS

Following the procedure outlined in the preceding section, we begin by

deriving the appropriate conservation equations from Eq. 4.4 by multi-

plying it by the various collisional invariants (it-(SI), then integrating over 12.

However in the self-diffusion process the only conserved quantity is

particle mass or number (p,.=1, and, in fact, even this variable is conserved

only in scattering collisions

[aft- 1 - [ fds‘z'z,(o'->o)¢(r,t)->:,¢(r,_o,t) =0

(absorption processes destroy particles). Hence we find that such self-diffu-

sion processes are characterized by only a single conservation equation.

This is obtained by multiplying Eq. 4.4 by (p, =1 and integrating to find

{la-‘f +v-.r+>:,,¢(r, t)=S(r, t) (4.5)

where we recall the definitions:

4,0,1); fdo<p(r,o,t), um); fdftfhflnfht) (4.6)

As expected, we find that the conservation equation (the “particle continu-

ity equation”) contains a higher order moment, J(r, t). A

Let us continue in this spirit by multiplying Eq. 4.4 by 12 and integrating

to find

1M

5- E + v -] do now, Q, t) + 2,J(r, t) = 1102,10, r) + s,(r, t) (4.7)

Here we have noted that

fdr‘zofdo'2,(o'_>o)<p(r,t)= roz,.r(r,t)

where 170 is the average scattering angle cosine defined by

—_ A A/_ l A1A."! I.

,10=<r2 o>_ 4wzsfdt2fdfl o (2249 (2)

Thus far we have made no approximations. But then we also have not

made any real progress, since the set composed of Eqs. 4.6 and 4.7

represents two equations in three unknowns. To proceed further, we must
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DIFFUSION THEORY 1:1 221

introduce Aan approximation to <p(r, Q, t) to calculate the moment

I d fl f1<p(r, 82, t). .

Wp introduce this approximation by assuming that the angular flux

q>(l', Q, t) is only weakly dependent on angle. To be more specific, we

expand the angular flux in angle as

. 1 3 .

<p(r, 12,1); Ear, t) + I”- J(r, t)-SI (4.8)

and neglect all terms of higher than linear order. Note we have identified

the expansion coefficients as o and J, as one can readily verify from the

definitions in Eq. 4.6.

We can use this approximate form to evaluate

. . .. .. ~ V4;

v fdflf181<p(r,fl,t)= 3

Hence the set Eqs. 4.5 and 4.7 can now be written as

1 84> _

E w + V J + 2,¢(r, r) - So(r, r)

1 8.1 1

E E + §V¢+2h-I(l',t)—Si(l',l) (49)

where we have defined the transport cross section E,,=2, — 1102,. These are

known as the P, equations, since in one-dimensional geometries, Eq. 4.8

corresponds to expanding in Legendre polynomials in u=cos0 and retain-

ing only through the Pl term

new)when)noowongmm

(We consider higher order PN approximations in the next section.)

In principle we could now use the Pl equations to describe the distribu-

tion of particles. To simplify these equations, however, it is customary to

introduce two further approximations. First we assume that the neutron

source term s(r, I}, t) is isotropic. This implies, of course, that the source

term S,(r, t) vanishes in the equation for the current density. As we

mentioned earlier, this approximation is usually of reasonable validity in

many applications (e.g., nuclear reactor analysis). .

As our second approximation we assume that we can neglect the time

derivative v_'8J/8t in comparison with the remaining terms in Eq. 4.9.
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222 U CONTINUUM DESCRIPTIONS

This would imply, for example, that

1 8

— — .1 << 2

[J] 01' I '’ '

that is, that the rate of time variation of the current density is much slower

than the collision frequency 02,. Since 02, is typically of order 105 sec—1

or larger, only an extremely rapid time variation of the current would

invalidate this assumption. These approximations allow us to rewrite Eq.

4.9 as

%V¢(r, t) + 2,,(r)J(r, t) = 0

We can solve this equation for the current density in terms of the flux

J(r, t) = — V¢(r, t) (4.10)

1

3260)

If we define the diffusion coefficient D by

1>(r)= [32..(r)]-'= [3(E.—n2.)]"=i..13

then we can rewrite Eq. 4.10 as

J(r, t) = — D(r)V¢(r, t) (4.11)

Hence we have found that in certain situations the current density is

proportional to the spatial gradient of the flux. This very important

relation arises quite frequently in other areas of physics, where it is known

as Fick’s law.2 It is also occasionally referred to as the diffusion approxima-

tion.

Before we consider the physical implications of this relationship, let us

use it to simplify the Pl equations. If we substitute this into Eq. 4.9 we find

i982;—v-1><r)v<1>+2.<r)¢<r.1)=s(r,!) (4.12)

This very important result is known as the one-speed diffusion equation. It is

perhaps the simplest description of particle transport processes.3

We can use the initial and boundary conditions for the transport

equation (cf. Section 1.2) to develop comparable conditions for the diffu-

sion equation (4.12). By integrating the transport initial condition over

angle, we find we must specify the initial value 4>(r,0) throughout the
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DIFFUSION THEORY El 28

region of interest. Boundary conditions are a bit harder to come by, since

diffusion theory can only approximate the actual transport boundary

conditions. Consider, for example, ‘the interface boundary condition that

demands that the angular flux <p(r, 11, t) be continuous across the interface.

Since diffusion theory describes only the first two moments of the angular

flux, we can demand at most continuity of flux ¢(r, t) and current density

J(r, t) across the interface (and can say nothing about continuity of higher

order moments). A A

The free surface boundary condition qa(R,,SZ,t)=0 for Il-é,<0 is even

more difficult to approximate. One approach would be to require the

inwardly directed partial current density J _(r, t) to vanish on the surface.

However diffusion theory yields only an approximate description of this

quantity and therefore of the corresponding boundary condition

M+2fi

L09; 4 2dxx=

(4.13)

(written here in one dimension for convenience). A popular alternative to

this boundary condition is obtained by recognizing that if we extrapolated

the flux described by Eq. 4.13 linearly beyond the boundary, it would

vanish at a point 2D=2)\,,/ 3 outside this boundary. Therefore the free

surface boundary condition J _(x,)=0 is commonly replaced by the sim-

pler condition ¢(2,)=0, where 2, represents the “extrapolated” boundary

that has been extended by the extrapolation length 20=2>\,,/ 3. We noted

in Chapter 2 that the transport theory solution to the Milne problem

indicated that a more accurate expression for the extrapolation length is

given by 20=0.7104l\,,.

It should be stressed here that the true flux does not vanish outside the

boundary. Furthermore, the diffusion theory flux is a poor representation

of the true flux near the boundary. Rather, the extrapolated boundary

conditions are intended to yield the proper flux only in the interior of the

region of interest several mean free paths away from the surface.

To summarize then, we can see that the derivation of the diffusion

equation involves essentially three steps: (i) the derivation of conservation

equations by taking moments of the transport equation using the colli-

sional invariants; (ii) closing this set by approximating the form of the

angular flux, which appears in the higher order moments (e.g., moments

that do not correspond to collisional invariants); (iii) ignoring time deriva-

tives that appear in any ‘higher order moment equations that do not

correspond to conservation equations. Such a procedure results in an

expression for the current density in terms of gradients of the conserved

variable (e.g., J = — DVo). Such approximate relations are known as
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224 El CONI'INUUM DESCRIPTIONS

transport laws, and the proportionality constant D is known as a transport

coefficient. Such relations play a very important role in any continuum

description. Indeed we will find that such continuum descriptions can

always be decomposed into exact conservation equations augmented by

approximate transport laws:

continuum or exact conservation equation

hydrodynamic +

equations approximate transport laws

From a more general point of view, we can see from Eq. 4.3 that the

higher order moments are generated by the streaming term v'V in the

transport equation and appear in the conservation equations as

V -fd30v111,-n(r, v, t)

—that is, as the divergence of a current or flux corresponding to the

collisional invariant (i.e., to the macroscopic analogue of the flux vii/in).

And since all approximations to the distribution function n(r, v, t) involve a

series of functions of v (or 11) in which the coefficients are expressed as

derivatives of the moments ‘I’, = fd3o¢,-n, the transport laws in general are

found to take the form

[foul/in; —- 2 u,,-viii,-

j

where 01,-,- are the corresponding transport coefficients. These ideas will

become more apparent as we provide still further examples.

Before proceeding to examine higher order approximations, it is useful

to mention an alternative approach that has become quite popular in

radiative transfer problems, namely, the variable Eddington factor ap-

proximation.“'5 Return for a moment to the equations that result from

taking the first two angular moments of the transport equation (4.4),

rewritten here for one-dimensional geometry with isotropic sources and

scattering for convenience:

18¢ 8]

;5t-+-$x'+2,,¢=S(-)

13] an

;w+X+2,J—0
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DIFFUSION THEORY El 225

Here we have denoted the second moment by II(x, t):

+1

TI(x,t)E[_l dp.1.t2(p(X,p.,l) (4.14)

The key idea is now to postulate that 1T(x,t) can be reexpressed in terms of

4>(x, t) as

II(x,t) =f(x, t)¢(x,t) (4.15)

where f (x,t) is known as the variable Eddington factor. Of course we could

formally write (from Eq. 4.14)

f(x,t)= IdwiflxluflHfj Idu<r(x,urt)]—IE< (42>

But since (p(x,p, t) is unknown, we must guess some suitable form for the

Eddington factor f(x, t) to implement this postulate. Two limiting cases

immediately suggest themselves. If we take f(x,t)=§, we find just the

diffusion approximation. By way of contrast, a choice of f (x,t)=l yields

the moment equations characterizing particle streaming in the forward

direction. Hence by an appropriate choice of §< f(x, t) < l, the variable

Eddington approximation is capable of modeling both diffusive and

streaming behavior. A variety of schemes for estimating f (x, t) have been

utilized in radiative transfer problems, particularly in the context of

numerical methods suitable for implementation in coupled radiation trans-

port hydrodynamics computer codes.5

4.2.2 E1 The PN Equations 1]

One-Dimensional Form E] A very common scheme for developing higher

order corrections to the diffusion equation involves Expanding the angular

dependence of the flux in spherical harmonics Y,m(fl).6_8 To illustrate this

scheme, it is simplest to consider the one-dimensional, one-speed, time-in-

dependent transport equation:

a w ", " r

#8_:-+21<P(X,1l)=21f2 d‘P'fHdn’fm '9)‘P(x,#)+3(x’”) (4'16)

0 —l

where f(Q’-§Z) is the scattering probability function. If we denote the

cosine of the scattering angle by pOESF-fl, we can expand the scattering
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226 El CONTINUUM DESCRIPTIONS

probability in Legendre polynomials as

= L 21+1

an 11) §0( 4,, )41111.)

where

b1=211f+ld110f(110)P1(110)

-1

Note here that bo= 1,bl =11; We have also noted that in general only a

Legendre representation of finite order L will be required to adequately

describe f (12' '12). (Indeed, f (12’ 42) is only given for several values of I in a

nuclear data set such as ENDF / B.)

Next we use the addition theorem”0 to write P,( 11.0) in terms of the

spherical harmonics functions Y,,,,(SZ) as

A . 1 4,, . .

P.(11'~a>= 2 (mhtm'mxm (4-17)

m=—I

Here we should note that the spherical harmonics functions Y,,,,(Q) can be

defined in terms of the associated Legendre polynomials P,"'( a) as

* — m . l/z .

Ylm(n) = Y1m(0»¢) = ] P1'"(0080)e‘"'4’

Of particular importance are the orthogonality and normalization proper-

ties of these functions

[11a Y1..<1‘1>Y...<1‘1>= 8.18....’

If we substitute the expansion (4.17) into the transport equation, we find

that the scattering term simplifies to

211 +1 L 1 +| I I I

f 111' f d1't(rr-a><p(x.1')= 2 - f 111 11.11 )P1(11)(21+ 01.11141)

0 —1 [=0 2 —1

Therefore the transport equation (4.16) can be written as follows:

8 ES L +1 I r !

1—1” +2.<1= — 2 (21+ 111411111] 41 P11 ><p(x.1>+s(x.1>

8x 2 [=0 _|

(4.18)
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DIFFUSION THEORY [I 227

The essence of the PN method consists of expanding the angular flux in

a complete set of Legendre polynomials

¢(x.11>= §(22—-;1)<P1(X)P1(11)

/=0

A similar expansion is used to represent the source term

s(x.11>= 2 (%,‘)S,(X>P,( 1)

[=0

where we can use orthogonality

+1 2

f_ l 41P,(11>P,(11)- ms”,

to find

+1

s,(x)=2wf_l 11114114111311)

If we substitute these expansions into the transport equation (4.18), multi-

ply by P,.( )1), integrate over a, and use orthogonality and the identity9

(1+1)P,+,+1P,_,=(21+1)11P,

we arrive at an infinite set of coupled ordinary differential equations for

the expansion coefficients (pa/(x):

1+1 dlPu-r l d‘PI-l _ _ _

dx dx +(Et 2:.sbl)(pl(x)_slb‘)’ I—oala-H

This infinite set of equations is equivalent in informational content to the

transport equation itself; but the set is of formal interest only until an

approximation is introduced to truncate the set to a more manageable size.

The most common truncation scheme is known as the PN approximation

and consists of demanding that

0,

all?

This yields a finite set of N +1 equations for the N +1 unknowns
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m 1:] CONTINUUM DESCRIPTIONS

<p0,<p,,...,<pN known as the PN equations:

l+l d<Pl+| l d‘Pl-1 _

) dx () dx +(2t_Esbl)q)!(x)—sl(x)’

I=0,1,...,N (4.19)

In some sense, then, as we make the set larger and larger, the representa-

tion of the angular flux as an expansion in a truncated set of Legendre

polynomials converges more closely to the exact solution of the transport

equation

N 21+1

<paP1>rox(x’f"‘)E IE()( 4,”, )(PI(X)PI( I‘) w ¢exact(x’p')

It should be noted that this truncation scheme is not unique.7 One could

just as well have demanded

(EEO, I>N

The latter approximation can be motivated by the recognition that since

P,( 11) oscillates more and more for large I, then presumably

+1

<P~+1(X)=2wf_1 dll<P(Xsll)Prv+1(ll)->O

for sufficiently large N. This implies a finite Legendre polynomial repre-

sentation of the angular flux such as that given by Eq. 4.20.

To make this more explicit, let us consider the form taken by the Pl

equations:

do

d—xl + (E! _ Zs)(p0=s0

1 do _

3 To +(21-P02.)<P1=81

If we let <p0=<1>,q>l =J, and furthermore assume isotropic sources such that

sl =0, we find that the PI equations reduce to just the diffusion equation:

d 1 do _

$132,, dx)+2“¢_S°
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DIFFUSION THEORY 1:1 229

It is useful to examine the structure of the solution to the more general

PN equations. To this end we seek elementary solutions of the form

<Pr(x)=are_“

Then if we substitute this form into the PN equations (4.19), we find that

the characteristic determinant for re is given by

(l—c)2, 1. 0 0

K 32, 21. 0 0 2K 52 31. =0

l

One can demonstrate7'8 that for the PN approximation with N odd, there

will be N + l roots i" re], corresponding to a solution

N

6<x>= Ensure—9

In particular, one finds that the number of roots does not increase in going

from odd to even order expansions. Furthermore, even order PN expan-

sions have been found to lead to boundary condition problems as well.

Hence it is customary to implement only odd order expansions (i.e., Pl, P3,

P5, etc.).

It is of interest to compare the structure of the solution for the total flux,

¢(x)=q>o(x), given by the PN equations (say, for a plane source at the

origin of an infinite medium):

rv/z

¢(x)= 2 Ajafleflix, x>0

j=0

with the exact transport theory expression for the flux (cf. Section 2.2.4)

(X)

¢(x) = a0e"‘°" +f drcA(rc)e"“

2,

In particular, we can identify the j =0 term as the asymptotic or diffusion

theory portion of the solution:

0

aoe _ "°"—>a0e _"°x~aoe “x/L
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230 1:1 CONTINUUM DESCRIPTIONS

while the remaining terms j > 1 can be identified as the transient terms

N/2 w

2 Aja6e'5‘—>f dxA(1c)e‘""

j-l 2.

From a more mathematical perspective, it is apparent that in implementing

the PN approximation, we have represented the continuous spectrum of the

transport equation by a discrete set of point eigenvalues (see Figure 4.2).

x-Plane

‘£1 “"0 Ko 2:

(a)

K—Plane

J‘ ‘I’ ‘I’ J‘ J4 44 ‘L Jr

‘w '1‘ '1‘ W‘ 'I‘ Yr‘ '1‘ r

_"3 _'<2 —"1 _'‘0 K0 "1 "'2 K3

\

(b)

Fig. 4.2 1:] Comparison of the eigenvalue spectra of (a) the transport equation

and (b) the PN equations.
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DIFFUSION THEORY l] 231

This feature is quite characteristic of continuum descriptions of particle

transport such as the PN equations (or the hydrodynamics equations

generated by the Chapman-Enskog method).

Boundary Conditions El We can develop the boundary conditions for the

PN equations directly from the boundary conditions for the transport

equation:

i Boundary conditions at infinity:

lim (p(x,p)=O= lim <p,(x)= lim 2nf+1d11<p(x,p.)P,(n)=0

|x|—>oo |x|—>eo _1

|x|—>oo

ii Interface boundary conditions:

+1 +1

1608,11)=<1n1(x.,11)=>211f_l ¢11H1>1(X.,11)1"1(11)=2rf_l a'1“1>11(X.,1L)1"1(11)

OT

(P1108) = ‘P111(xi)

iii Vacuum (or free surface) boundary conditions. To be specific, con-

sider a slab geometry (see Figure 4.3) for which the transport boundary

conditions are

11>(0,11)=0. 0<11<l; <1>(a,11)=0, —1<11<0

Now recall that since we have represented the angular flux in the PN

approximation as

_ ” 21_+_1 ,

<1>(x.11)—!§0( 4,, )‘P1( >800

where

N .

<1>1(X)= E Ajale'“""

j=0

we must determine N +1 boundary conditions to evaluate the N +1

parameters Aj—that is, (N + l) / 2 boundary conditions on each side of the

slab. But here we have a problem, since the transport boundary conditions

are given over only half of the angular range. This introduces a degree of

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



732 1:] CONTINUUM DESCRIPTIONS

xs

(4)

x=O x=a

(b)

Fig. 4.3 [l (a) Interface and (b) slab boundaries.

arbitrariness into our choice of boundary conditions for the PN equations.

One possibility (known as the Marshakll boundary conditions) would be

to choose

1

f d14<1>(0,14)P1(#)=0

° forl=1,3,...,N odd

[_01d14<r(a,14)P1( 14)=0

In particular, for the Pl approximation, these conditions become

L1d11<1>(0,14)1’1(14)=1+(0)=0; fidwwmt 14) =J-(a)=0
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DIFFUSION THEORY El 233

which are consistent with the zero reentrant partial current density

boundary conditions commonly employed in diffusion theory.

An alternative choice known as the Mark12 boundary conditions sets

N + 1

l, 2, . . . , T

where the u,- are the positive zeros of PN+1(11.). One can show that the

Mark boundary conditions are equivalent to replacing the vacuum by a

purely absorbing medium. They also allow one to directly relate the PN

equations to the discrete ordinate or SN equations as we demonstrate in

Chapter 8.

<1>(0.11,-) = 111(11. — 11,-) = 0, 1'

General Form of the PN Equations El We can generalize the PN equations

further to include energy, time, and full three-dimensional spatial depen-

dence by starting with the general form of the transport equation:

1 A _ 0° I A! / Ar‘A / A!

Z-a-tm v¢+2,¢_f0 dE fdfl 2,(E —>E,12 SZ)<p(r,E,SZ,t)+s

(4.21)

and expanding the angular flux in spherical harmonics:

. w I 1/2 .

10.11.11.012‘) 2! ) 11.11.11,!) 4.111) (422)

(21+1

4111

In a similar fashion we expand the scattering kernel in Legendre polynomi-

als and use the addition theorem to write

21+1

4111

L

2,(E'_>E,r“r-o)= 2 ( )s,(E'_>E)P,(o'-o)

[=0

P

21 21(E’—>E)Y12'..(§1') m9)

= 1

0m—

-

II

If we substitute this expansion into the collision term, we find that it

simplifies considerably to

f OodE’ f dr‘z'2,(E'->E, Q’-Q)<p(r,E’, £231)

0

L 1 ,0

=2 2 112.111) [0 ware-ensures

l-O m=—
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154 1:1 CONTINUUM DBCRIP'TIONS

Thus when we substitute the spherical harmonic expansion Eq. 4.22 of the

angular flux into the transport equation 4.21, we find

1 aq’m '‘

12 T; +n.vlplm+zlq)lm

— f°°dE'2,(E'-»E)1>,..(1.E21)—s...} Y,..(1‘1)=0

O

In the usual manner, we can now multiply by ,"!,,,.(I2), integrate over (2,

and implement orthogonality and recursion relations to find the general

form of the PN equations. Unfortunately, the streaming term contributes

the matrix elements

[do mom Y,..(1‘1>

which are quite complicated; therefore the general form of the PN equa-

tions is rather ugly: '3

l 3%,, + ' (l+2+m)(l+l+m) ‘IN _I 3(P1+|,m+1_i a<P1+Lm+1

0 31 2 2 8x 2 8y

_ (21+3)

+'(1+1-m)(1+2-m) "/2 l 8(P!+1,m—1 _i‘ Beam-1

(21+3)2 2 6x 2 8x

{kl-flail l/z'li’lmilm

(214,02 _ 2 8x 2 8y

+-(l+m)(l+m-—l) ‘”'_l 6<n_|,..._| 1 3s>t_|,..-1

(21_1)2 2 8x 2 3y

+ ' (1+ 1 +m)(l+ 1 —m) "/2 80.1,.

(21+3)2 _ 81

+ ' (1+ m)(l—m) “2 ash-1.,"

(21-1)2 32

+2,<p,m= LwdE’2,(E’->E)(p,m(r,E’,t)+s,,,, (4.23)
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DIFFUSION THEORY 1:1 235

The only simple example of the structure taken by this set of equations

occurs for the lowest order, the Pl equations. Then if we identify

2w '/2 . 2 '/2

QX=(T) (Yl‘l—l—Yll)’ Qy=_l(_w) (Yi—l'l'yll)

3

477 V2

9.=(T) Yfo

and

l .

Jx=(W)(tpl,—l_¢ll)r Jy=_(fi)((P1,-1+‘Prr)i Jz=¢|0

we find that the Pl representation of the angular flux is just

66, E, n, r) = (1 /477)¢(r, E, r) + (3 /4n)s‘z -J(r, E, 1)

and the Pl equations take the general form

l 3_‘1’ +V.J+2‘¢=fwdE'Eo(E’—>E)¢(I',E'J)+So

v at 0

l l w r I I

z-gt-

’t)+sl

DPN Methods 1:] As a variation on the foregoing theme, it is occasionally

useful to perform a half-range PN expansion.'4"5 More specifically, near

the boundaries of a system, the angular distribution of the angular flux is

highly anisotropic (e.g., discontinuous at )1 =0). An accurate description of

this angular dependence would require a PN expansion of very high order.

To circumvent this, we can use a separate expansion in each range over

which the angular distribution is slowly varying. In particular, at an

interface one would use an expansion in two series of Legendre polynomi-

als, one for uE[— 1,0] and one for p.€[0, l]

<v(x.u)= i (22:1)[‘P1+(X)P1+(IL)+<PI_(X)PI_(H)]

[=0

where we define

_ P(2 —l, 0<11<l _ 0, 0<,u.<1

P’+(")=l 1 li, ) -1<n<0 P’ (“)E[P,(2n+1), —1<n<0
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36 El CONTINUUM DESCRIPTIONS

while

1P1+(X)=2"f ldri<t>(x.ri)Pr*(ri), <P/_(x)=2‘"f0 dri<r>(x,ri)PF(ri)

0 —-I

If we substitute these expansions into the transport equation and apply

orthogonality, we arrive at a set known as the DPN (the “double” PN)

equations:

2113')‘: :(21+1)% +2(21+1)z,.p,1(x)=>:,[¢,;* +<po- ] +2308“,

Some Further Comments 13 Although PN or spherical harmonic methods

are of great value in obtaining a formal solution to the transport equation,

they have found little application to practical problems because the PN

equations are quite ill-suited to numerical solution.16 These equations are

tightly coupled and difficult to solve. Furthermore, as we have noted, there

is some ambiguity in formulating boundary conditions. Hence most

numerical transport calculations are based on discrete ordinate, finite

element, or Monte Carlo methods (discussed in some detail in Chapters 8

and 9).

The PN method does provide a general approach for contracting the

description given by the full transport equation for the angular flux to a

reduced or contracted (albeit approximate) description for only a few

angular moments of the angular flux such as ¢(r,t) or J(r, t). Viewed in a

somewhat different light,l7 we have used this method to project the original

transport equation onto a restricted subspace as illustrated in Figure 4.4.

That is, if we write the transport equation as

Bip=s

then we have projected this equation onto an N-dimensional subspace, a

procedure we can symbolize as

a, e<p= oNS

We then sought the solution ipappm to the projected problem in this

restricted subspace as a linear combination of the basis functions 41,, that

span the subspace (e.g., the Y,,,,(SZ) functions):

N

qJ—Npapprox = 2| (pa ‘Pu

n =
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DIFFUSION THEORY 1:1 737

\

\

pproximate solution spa

Fig. 4.4 1:1 Projection of the exact solution space onto an approximate or “con-

tracted” solution space.

Then by substituting this form into the projected equation, we obtained a

set of N equations for the expansion coefficients.

To illustrate this more specifically, in deriving the Pl ‘equations we

projected onto the zeroth and first angular moments of <p(r, II, t):

dTZ-l-

f 1 ()q, . 2, .I ,

. . a

fdfl-SZ

ll

1 3¢ _

3 at +v J+Ea¢—S0

1 8J x AA

35+v-fannnqp+2,J=s,

We then restricted the approximate solution to these equations to lie in the

subspace spanned by 1 and fl:

3 A

(p_>(Papprox= 595+ E“ 'J
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BB 1:] CONTINUUM DESCRIPTIONS

to arrive at the Pl equations for the “expansion coefficients” p(r, t) and

J(r,t):

projection { Iransport

onto 1, Q equation

((papprox) } : I)1 equations

This identification of the PN method as just a projection of the transport

equation onto a reduced dimensional subspace to achieve a contracted

description of the particle transport process can be made considerably

more precise. Indeed, as we now demonstrate, it is not necessary to

introduce an approximation of any sort to achieve such a contracted

description. One can use projection operator algebral8 to obtain an exact

(although formal) contracted description.

4.2.3 E] An Alternative Derivation of the Diffusion Equation and Its Gen-

eralizations II] To point out some of the important concepts involved in

“contracting” a kinetic or transport theory description to a continuum

description, we provide a somewhat different (and far more elegant)

derivation of the diffusion equation. We use projection operator algebra to

obtain formally exact contracted descriptions of particle transport

processes. For example, we derive an exact “generalized diffusion equa-

tion” for the scalar flux, as well as corresponding exact generalizations of

the PN equations. It should be stressed at the outset that there is nothing

magic about these exact generalized diffusion equations. They are merely

formal identities with the original transport equation, and as such, they

would require all the labor for their solution that would be required by a

more direct attack on the transport equation itself. Rather, the value of

such projection operator methods is that they recast the original transport

equation into a form more suitable for approximation. The generalized

diffusion (or P”) equations not only are a somewhat more direct point of

departure for the development of the traditional approximations in trans-

port theory (e.g., PN methods or asymptotic transport theory), but they

also act as a natural bridge to a class of hybrid approximations such as

generalized diffusion coefficients)“19 variable Eddington factors”:21 or

flux limiters,22'23 which attempt to correct the diffusion equation for

transport (e.g., streaming) effects.

We begin by applying a particularly simple projection operator to the

simplest of all transport equations, that characterizing one-speed transport

with isotropic sources and scattering (although, as we demonstrate later, it

is a trivial matter to extend these methods to the more general forms of this

equation). This will yield an exact generalization of the familiar one-speed
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DIFFUSION THEORY [1 B9

diffusion equation. Then we demonstrate how the traditional approximate

theories of particle transport (diffusion theory, PUP”, asymptotic transport

theory) fall directly from this equation. We also illustrate how this equa-

tion can be used to develop a variety of modeled diffusion theories that

interpolate between particle streaming and diffusive behavior. We then

present a variety of more sophisticated projection operator theories that

are capable of treating the more general form of the transport equation.

A Simple Example El To illustrate how projection operator methods can

be applied to study transport problems, we first consider the simplest form

of the transport equation in which the assumptions of one-speed transport,

uniform media, and isotropic scattering and sources have been introduced.

Indeed, this problem is sufficiently simple that it can be solved exactly for

many situations—which makes it all the more useful for illustrating the

projection operator method. The transport equation under these assump-

tions becomes

I 8<p__'~ _ Es A/ ‘I 1

F27- n vtp 2,¢+ 4w fdn q>(l',fl,t)+ 4w S.,(r,t) (4-25)

or in an obvious operator notation

18<p_ +&

v at 471 (426)

We regard this (for the moment) as an initial value problem in an infinite

medium, therefore leaving boundary conditions unspecified.

Our primary goal is to obtain an equation for the scalar flux

¢(r,t)=fd§1<p(r,§1,t)

—that is, we wish to contract our description of particle transport from

rp(r, Q, t) to ¢(r, t). We define an operator

_1 . ~°

P°=Hfdn (4.27)

which accomplishes this contraction,

¢(r, t) = 4'rrPtp E 4m"

Note that P is a projection operator in the sense that P2= P. In particular,

P projects out the isotropic component q)“ of (p.
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240 l] CONTINUUM DESCRIPTIONS

We now use P to project out the piece of the transport equation that is

“relevant” to the calculation of ¢(r, t). To this end, we first operate on Eq.

4.26 with P and then (1 — P), respectively, to find

1 a‘l’u _ S0

ET—PLQH'I'PLIPL'I'a—fl l 8:; =(1—P)L1tpH+(l—P)Lrpl (4.28b)

where we have identified

QPHEPqJ, q)J_E(l—P)tp

and noted

<1>=P<1>+(l —P)<1>=<1>"+<1>i

We also have used the fact that (1 — P)S0=0. Next we formally solve Eq.

4.28b for <pi(t) in terms of q)“(t):

11>.(0=e'"<'-P>L<1.<0)+ f 'd~'"<‘-P>Lv<1—P>1¢1<1—0

0

and substitute this into Eq. 4.28a to find

a t

%%—PL(P||(I)=Ld'rPLe'mu—mLvU—P)LAp||(l—T)

s

+ 4—3 + P12 "1“ -P>L<p,(0) (4.29)

We now have arrived at a closed equation for the projected component

<p"(t) of <p(t). (In the literature of statistical mechanics, Eq. 4.29 is some-

times referred to as the “generalized master equation”.“)

To simplify Eq. 4.29, we make the following observations:

i PM": _24‘P11(')

(l_P)L<pl=_n'V(pll . 14L.

111 Pram“~P L(1-P)L<p"=P[tt-ve*"< > SZ'V<p“(t—'r)]

If we use these results in Eq. 4.29 along with the substitution <p||(t)=

(4111)‘ l<1>(t), we find

13;? _ ‘ .i “ wo—HL‘. _

v at+2,¢-f0d1v 47Tfd1212e o v¢(1,1 1)+s,,(1,1)+10(1,1)

(4.30)
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DIFFUSION THEORY El 241

Now notice that if we define a generalized diffusion “coefficient”

(although it is actually both a tensor and an operator)

D(r,¢)E-A:J—WfdQfZeW("P)LfZ

we can rewrite Eq. 4.30 in the form of a generalized diffusion equation for

¢(r, 1)

l 511 + 2,¢= f ‘.14 v -1>(r,T)-v¢(r, t - T) + son, t) + 606,1) (4.31)

0 8t 0

Here 6D(r, t) is the initial value term arising from the solution of Eq. 4.28b

on a; - v- lfdQQeW—P“ an o 0)— i¢(r o)

’ 4w ’ ’ 4'11 ’

Our exact (but still formal) generalized diffusion equation differs from

the usual diffusion equation in two very important respects. First, the

diffusion coefficient has now been replaced by an operator D(r, t) that is

nonlocal in space and time—that is, the diffusion term exhibits “memory.”

Second, there is an initial value term that depends on the initial value of

the angular density (p(l', 81,0), not just the projected component <p||(0)=

(4'11)— l<1>(0). [One of the classic problems in kinetic theory is the so-called

Hilbert paradox,”25 which involves the role played by the initial data for

the transport equation, (p(r, 9,0), in the time evolution of the continuum

description for ¢(r, t). We can see quite clearly that this appears through

the initial value term 6D(r,t).]

To provide an alternative perspective of this equation, suppose we ignore

the source term So(r, t) for the moment and consider the transport equation

4.25 as an initial value problem in an infinite medium. Then we can

introduce a Fourier-Laplace transform

~ 00

k,s E d3re_"‘" dte‘" r,t

¢( ) f [0 ¢( )

to transform the generalized diffusion equation 4.31 into

(% +2,,)J>(k,s) = - k2D~(k,s)<i>(k,s)+¢o(k,0)

or solving

v¢o(k)

I k,s =—-—~

¢( ) s+02a+0k2D(k,s)

(4.32)
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242 U CONTINUUM DESCRIPTIONS

[Here we have followed a convenient custom in projection operator theo-

ries by ignoring, at least for the moment, the initial value term (pi(0) by

postulating an isotropic initial distribution <p(r,fl,0)=(47r)_'¢0(r).] We

have defined

0

477k 2

13(k,s)=( )fdo(1.-o)[s-n(1-P)L]-'(k-o)

The nonlocal nature of the generalized diffusion coefficient is readily

apparent by its dependence on wave number k and frequency w=is. Its

formal nature is also apparent, since any explicit treatment of the propaga-

tor [s—v(1—P)L]_I is tantamount to solving the original transport

equation.

But we recall that we can easily solve the original transport equation

4.25 exactly for this very simple situation (cf. Section 2.5) to find

poll (s+vZ,+ikv)

n

_ 2ik s+vE —ikv

¢(k,s)= x(kss) = I '

A(k,s) l_ 251 s+vE,+1kv

2ik “ s+vE,—ikv

thereby obtaining an explicit form for the generalized diffusion coefficient:

.. k A k, + 2

Wm): e.< ) ( s) _(s v kzx(k,s) ok2

Of course, such an explicit form for D(k,s) will not be available for more

complicated problems. Rather, we must develop procedures for approxi-

mately calculating the nonlocal generalized diffusion coefficient D(k,s).

Approximations to the Generalized Diflitsion Equation [:1 The primary

utility of the generalized diffusion equation (aside from being a rather

elegant reformulation of the transport equation) rests on its suitability for

developing approximate descriptions of particle transport. We illustrate

this feature by first demonstrating how the standard approximations can

be obtained from Eq. 4.31, then we introduce a new class of modeled

theories of particle transport.

i Pl-Diffusion theory. We begin by noting that the “modified” time

propagator exp['rv(1- P)L] can be explicitly written as

exp['1-v(1—P)L](1—P)L<p||

=exp{ —'rv[(l—P)Q'V(l —P)+§l,]}(1—P)L<pl|
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DIFFUSION THEORY El 243

But if we identify ||(l—P)SAZ-V(l—P)|| as essentially a measure of the

spatial gradient of the flux, it is apparent that the usual diffusion ap-

proximation should arise from the condition

2,-1||(1-P)Q-v(1—P)ll=(#)<<1

where I is a characteristic length scale. In this case

exp{ — 'rv[(l — P)§Z -V(l — P) +E,] } Eexpl: — 102,]

If we next note that this approximation to the propagator yields

38

l " -m(l-P)L z #1121 " _ _= —w2, __

“fans; S2j_-e “fauna, e 3 ,1

(4.33)

and neglect the initial value term <pl(0), we can write

1 8 -

3 Tl’ +11%, 1)= f0'd’( % )8 “'V’mr— r>+ 80W)

Although this form may at first appear a bit unfamiliar, it is, in fact,

equivalent to the time-dependent Pl equations:

1 64> _

3 at + V J + 20¢ - S0 (4.34a)

1 8J l

3?; + §V¢+2,J-0 (4.34b)

in which the second equation has been solved for J in terms of ¢, and this

expression has been substituted into the first equation.

To obtain the more familiar diffusion equation, we must assume that

¢(r, t) varies slowly in time compared to (02,)—l so that we can expand

¢(r,t— 7) about t and retain only the leading term to find

ftd're_'°2'¢(r,t— 1');food're_'”z'¢(r,t)=(vz,)_|¢(r,t) (4.35)

0 0

If this is substituted into Eq. 4.34a, we arrive at the usual diffusion

equation

% 28‘? + Ea¢(r, t) = D V2¢+ S0 (4.36)

where we have identified D=(32,)". The approximation represented by
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244 El CONTINUUM DESCRIPTIONS

Eq. 4.35 is sometimes referred to as the “Markov” approximation, since it

eliminates the “memory” or nonlocal time behavior in the diffusion

coefficient in such a fashion that 8¢/8t in Eq. 4.36 depends only on the

flux ¢(t) evaluated at time t.

One can easily develop the higher order PN approximations by simply

retaining more terms in an expansion of the propagator in the gradient

operator 2,- l(l — P)12-V( 1 — P). Although such propagator expansions are

straightforward, they can become somewhat tedious; therefore we develop

a more direct method for deriving the PN equations (and their generaliza-

tions), using a more suitable projection operator, later in this section.

ii Asymptotic transport theory. A common approximation in transport

theory involves retaining only the asymptotically dominant portion of the

solution to the transport equation, thereby neglecting all transport “tran-

sient” contributions.“26 This particular approximation is, in fact, nothing

more than the Chapman-Enskog approximation” familiar from kinetic

theory (which we develop in detail in Section 4.3). To demonstrate this

fact,“ we note that inherent in the Chapman-Enskog method is the

fundamental assumption that the distribution function is a time-indepen-

dent functional of its hydrodynamic moments. That is,

tP(l',QJ)= (PO-1931(0)

For our linear transport equation this is equivalent to assuming (in k—s

transform space, for convenience)

@(k, (is) = F(k, Q)q">||(k,s) (4.37)

where F(k,§2) is anA unknown (but time- and frequency-independent)

function of k and I}. To implement this assumption and to evaluate

F(k,fl) and q">"(k,s), we begin by substituting this ansatz into the Fourier-

Laplace transforms of 4.28 to find

17%(0) : ixP||(0)

s+vZa+vP[ik'QF(k,Q)] _ s‘H‘oU‘)

<i>||(s) = (4.38)

and

vF‘P||(0)

(.s + ik-fz + 02,)F— vP[ ik-TZF] + ik-fzv

¢||(s) = (4-39)

Here we have noted that P[ik-§ZF] depends only on k, and we have

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



DIFFUSION THEORY El 245

furthermore defined (for a reason that will become apparent in a moment) -

x,(k) 56.8,, + 6P[ ik-T2F(k, (1)]

If we now eliminate <ia||(s) and (p||(0) between these two equations, we can

solve for

2‘.

(1 + F) = —,.——s_,— (4.40)

ik-Sl+2,—P[ik-QF]

But since we can show P(1+F)= l, we can apply tlre projection opera-

tor P to Eq. 4.40 to arrive at an equation for P[ik-§2F(k,fl)] or equiv-

alently J\O(k), which takes the familiar form

_ _ _ , —}\0+oZ,+iko _

Mk’ *0)“ 2ik n(—)\0+oZ,-iko ‘0 (4'41)

which is the usual dispersion relation for the “discrete” or asymptotic time

relaxation parameter 210(k)

A0(k) = 62, - ko 6114;?)

S

Hence, if we now recall the form Eq. 4.38 has taken by <i>||(k,s) under the

ansatz Eq. 4.37, it is apparent that this ansatz has led immediately to the

familiar asymptotic transport form for the scalar flux

¢(k.0=¢<k.9)e-~<*>'

Thus we find once again that projection operator methods have pro-

vided a very convenient starting point for deriving the standard approxi-

mations to the transport equation. But these methods also facilitate a

somewhat different and more physical approach, since they recast the

original transport equation into a form that represents an exact generaliza-

tion of the well-known diffusion equation, but with a nonlocal diffusion

coefficient. Hence one is tempted to guess or model the relevant properties

of this term directly, thereby avoiding the complexity of a perturbation

expansion in (mfp/l), for example.

iii Modeled theories. It is easiest to guess or model the behavior of the

generalized diffusion coefficient in k—s transform space. Recall that the
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exact form for D(k,s) is given by

D(k,s)= 4:18 fdo(k-r‘r)[s+v(1-P)L]-'(k-n)

The simplest such model would be to ignore the k,s dependence of D(k,s)

entirely by replacing

_ ~ 2

o k, 0 0,0 = ‘ ED

( s)—> ( ) 32, 0

But of course this “Markovian” model corresponds to traditional diffusion

theory.

A somewhat more interesting model can be developed by retaining a

non-Markovian behavior in D(k,s) and postulating a single relaxation time

form

_ D(k,t=0) _ v/3

5”“)— s+tx(k) _s+ot(k)

where we have noted_ that the t—>0 (or s—>oo) limit of D(k,s) can be

calculated exactly as D(k,0)= v / 3.

Our attention now is directed to choosing some appropriate model for

the k-dependent relaxation parameter n(k). We begin by demanding that

our model yield the known limiting behavior of ¢(k,s) for small and large

values of k,s. In particular, for small k,s, we know that <l>(k,s) is given by

Pl-diffusion theory

1802/3 -'

s + v2,

<i>(k,s) —k-—O> 04>‘, s + 02,, +

which implies that D(k,s)—3J3}? as s,k—>0 or a(k)-+vE,2/Z, as k—>0.

One such model would be the k-independent form a(k)=vEf/E,~vZ,.

But of course this “local” model of a(k) leads directly to P1 theory and

therefore is of only passing interest.

We can generate more sophisticated models for a(k) by demanding that

our model approximate as well the large k,s behavior of ¢(k,s). This

behavior is a bit more complicated to study because it is obviously related

to the free streaming limit and therefore depends quite sensitively on the

particular source and initial conditions of interest. For example, if our

problem were to involve an initial condition corresponding to a forward

directed beam at the origin plane of an infinite medium, then evidently we
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would have

<l>(k,s) T—> v¢0[s+vZ, + ikv] _l

which implies D~(k,s)—>(2, + ik)/ k2 as k,s—>oo, or a(k)—>(vk2/ 3) / (E, + ik)

as k—>oo.

We could now choose a(k) to be a simple form that interpolates between

these limits. For example, if we are interested in the forward beam

streaming problem, we might choose a(k) = (viii + vk2 / 3) / (Z, + ik).

But this discussion suggests a far more satisfying prescription for model-

ing D(k,s). Suppose we return to consider the exact transport solution for

an initial condition localized at the origin plane:

+1 (p0(0,p.) Z, s + v2, + ikv '1

f dlL——.—— l— . 1n '——.'-

_| s+vZI+tkvu 21k s+vE,-—ikv

This solution exhibits a simple pole at s= —}\0(k) and the usual transport

branch cut from -— 02,— ikv to —v2,+ ikv as shown in Figure 4.5.

Furthermore, as k—>k* = 1112, / 2, we recall that }\O(k)—>}\* EvE, and eventu-

ally “disappears” into the branch cut, although the discrete pole can be

followed onto the analytic continuation of A(k,s) if desired for k >k“.

A particularly interesting model would be one that yields not only the

correct asymptotic behavior due to the pole at —}\0(k), but also simulates

streaming behavior by including contributions from the branch points at

—v2,iikv. That is, we could try to construct D(k,s) so that it yields a

dispersion relation of the form

<1>(k,s)=

A(k,s) = [(s + 0232+ kzvz] [s +7\(,(k)] (4.42)

It is apparent that such a model would require D(k,s) to take the form

2 " _ 70‘)

k "D(k’s)_ s2+£(k)s+a(k)

[essentially a two-time relaxation model of D(k,t)]. If we insert this form

into Eq. 4.32 and compare the resulting dispersion relation with Eq. 4.42,

we find it necessary to choose

("221+ k202)(>\0(k) _ 02a)

(s + 021,)2 + kzv2 + (h0(k) — vEa)(s + 02:)

kzvD~(k,s) =
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s— Plane

ikv ikv “Plane

E >1<

—v.‘I, _ll 4’

'F Y '1‘

E _)‘o —02, -)\°

_ >1<

—1kv —ikv

(a) (b)

.s—Plane

>1:

* 1)

‘L d1

'1‘ '1‘

_A0

*

>1:

(c)

Fig. 4.5 1:1 s-Plane structure for various transport models. (a) Exact transport

solution. (b) Generalized diffusion model. (c) Higher order model.

This form not only yields the complex s-plane structure, which simulates

both asymptotic and streaming contributions (see Figure 4.5), but further-

more yields the correct Markovian limit for small k,s.

This s-plane comparison suggests a systematic scheme for improving our

model. We would choose a form for D(k,s) that sprinkles additional poles

along the cut from — 02, : ikv for large k to better describe the transport

transients.

Such models that “interpolate” between diffusive and streaming be-

havior are very similar in spirit to the generalized diffusion coefficients,19

variable Eddington factor,”21 and flux limiter schemes,”23 which have
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DIFFUSION THEORY 1:1 249

been used in the past in an attempt to correct or patch up the diffusion

equation for transport or streaming effects. For example, in the variable

Eddington factor method, one introduces the ad hoc assumption that the

second-order moment of the angular flux is simply related to the scalar

flux

11(x.1)= ff]‘arson.ozfwnw) (4-43)

The burden now falls on estimating or guessing the form of the “variable

Eddington factor” f (x,t). A very similar spirit is adopted in flux limiting

schemes that interpolate the current density between diffusive and stream-

ing behavior in an ad hoc fashion

J(x.t>~[(—D%)_'+c(%)_']_' (444)

But there is one very important distinction in our generalized diffusion

theory: it is nonlocal in space and time. That is, D(k,s) depends on k and

s:

J(k,s) = - 15(h,s)v.i>(k,s)

The corresponding variable Eddington factor is then (exactly)

f(k.s)=(s+vE.)D~(k,s)

This, of course, is a major disadvantage from the viewpoint of practical

calculations, since nonlocal (i.e., integral) equations are awkward to solve

numerically compared to local (i.e., differential) equations. But, in fact,

when we recognize that our theory is formally exact, it is apparent that any

approximation (such as Eq. 4.43 or 4.44) that attempts to remove this

nonlocal feature is mutilating the transport nature of the process. Particle

transport (at least on the macroscopic level of the scalar flux) is simply not

a local process, unless the traditional approximations that rely on (mfir/l)

<<1 are valid.

Altematioe Choices of the Projection Operator [:1 A variety of alternative

choices of projection operators can be introduced in a very similar manner

to achieve contracted descriptions of transport processes. A particularly

useful class of projection operators takes the form28

P9 E< 9a“>-<aa"‘>_'-a (4.45)
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where the angular average is defined by

_ I A l +|

(>_4wfd52 -—>, _I an

and a is a column vector of functions of angle (which comprise the basis

spanning the approximation subspace), a=col(a|, . . . ,aN). Several examples

(confined, for convenience, to one-dimensional plane symmetry) illustrate

this class of projection operators more clearly.

i a= 1. Then P reduces to our original choice of a projection

l

P—>Pl 0 55/3; dp.°

ii a=col(l,p). We now note that

P_>P2° E<°>+3u<°u>

projects q>(x,p.,t) onto its first two angular moments

P2(p=%¢(x’t)+%p‘l(xat)

If we now imitate our earlier procedure for deriving the generalized

diffusion equation with this new projection operator, we arrive at a set of

two coupled equations

lap 61 _

Zw'l'a'f'zatb—SO

la_J+la_¢

v at 3 3x

_ ' i 3ll2"] TU(]—P)L 3P-2_l _a_ _

-f0d1-ax<( 2 )e 2 exam r)+6D2(x,t)

+ 2,1

which we immediately recognize as an exact generalization of the conven-

tional Pl equations (4.33).

iii 2=001(P0(1.L),P1([L),...,PN([L)). Obviously this particular choice of

projection operator decomposes (p into its Legendre polynomial compo-

nents

P<p= i (%)¢,(x,om>
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where

<l>1(X,l)Ef_+lld11P/(11)*P(X,#,I)

This will generate an exact generalization of the PN equations:

1%+(1+1)8¢,,,+( l )a¢,_,

v at 21+1 8x 21+1 a, +(21-E.b/)¢1=S,

i%+( ~ )ao—l

v at 2N+1 8x +(E'—E’bN)¢N

8 +1 _ 8

=LIdTa—x[f_l dlLP)v+|(1")e'm(l P)LPN+1(”')]a¢N(x’t_T)+6DN(-x’t)

These equations differ from the conventional PN equations in that the

projection operator method has exactly (although formally) truncated the

set at order N by solving for ¢N +1 in terms of ¢N.

iv Energy dependence. Although our study of projection operator

methods has been restricted thus far to one-speed problems, the method

can easily be extended to handle energy dependence or anisotropic scatter-

ing. Consider, by way of example, the transport equation characterizing

time-dependent neutron thermalization

% = -—v-V<> —vZ,° +fd3v’v’Z,(v’—>v)° n(r,v,t)EBn (4.46)

To simplify, we avoid the explicit treatment of the source term and treat

this as an initial value problem. We also assume l/v absorption for

convenience, 2,,(v)=22/v. The simplest choice of a projection operator

would be

P0 EM(V)fd30' 0

where M(v) is the normalized Maxwellian distribution. This projection
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252 E1 CONTINUUM DESCRIPTIONS

operator selects out the number density

n" = Pn = M(v)fdson(r, v, t) EM(V)N(I', t)

If we now apply this projection operator to Eq. 4.46 in the usual fashion to

find

an"

? —P13n“=}(;'drPlie’“—’)E(l — P)Bn"(t—r)+PBe'('_P)Ln_L(0)

then integrate this equation over energy and angle, we arrive at a gener-

alized diffusion equation of the form

3T7 +22~<r.0= f'dTv-Dm-vmt—0W0»)

0

where

110.1); fdsvvei‘rmvmv)

v Linearized Boltzmann equation. The same idea can be used to de-

velop contracted descriptions for any linear transport equation.”30 For

example, consider the linearized Boltzmann equation

% +v-v¢= fdsv1fdfilv_V1|0"0(V1)[1P(V')+(P(Vi)—<P(V)_<P(v1)]

Then the appropriate projection to generate a continuum description seeks

to contract the description of (p(r, v, t) to its hydrodynamic moments

n1(r,t) 1

"0

“(1,1) 5 I 113660”) v Efdsvqmao)

Tl(r’t) E _1

To 3kT0

The corresponding projection operator then becomes

= * o * _10 =2 m o @—

P<p <<pa><aa> a n0+kT0uv+2To 3kTo 1
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THE EQUATIONS OF HYDRODYNAMICS El 253

Then if we apply this projection operator to the linearized Boltzmann

equation, we arrive at a generalization of the linearized hydrodynamics

equations.”30 Although these equations are of considerable interest, we

postpone their study until we have generalized this projection or contrac-

tion procedure to nonlinear transport equations.

4.3 Ci THE EQUATIONS OF HYDRODYNAMICS El We now turn

our attention to the derivation of a continuum description of collective

phenomena?‘—35 That is, we consider how one can derive the equations of

hydrodynamics for a fluid (whether liquid, gas, or plasma). For simplicity,

we take as our starting point the transport equation describing a single

species fluid

_+va _

at

an an F an an

at 8r + E _( )coll (4.47)

We leave the collision term unspecified for now, requiring only that it be

local in both time and space and that it conserve particle mass, momen-

tum, and energy in a collision.

We first develop the conservation equations corresponding to these

conserved quantities, then describe the most popular schemes for closing

this set of equations and generate the corresponding transport laws.

4.3.1 [1 The Conservation Equations [I We begin by taking the mo-

ments of the transport equation (4.47) with respect to the collisional

invariants

‘l/l=mr Ill2=mvr ‘P3=%mlv'_u(r’t)l2

The macroscopic counterparts of these variables correspond to mass den-

sity,

p(r,t)Efd3vmn(r,v,t)E\I/l(r,t)

momentum density,

p(r, t)u(r, t) E f d 3v mvn(r, v, t) E \I'2(r, t)

and kinetic energy density

%p(r,t)0(r,t)5fd3 L;-|V—Il(I',l)|2n(l',V,I)E‘I'3(l',l)
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where u(r, t) is the local fluid velocity and 0(r,t)= kT(r, t) is the local

(kinetic) temperature.

The general form of the moment (or Maxwell transfer) equations can be

written as follows: '

l 3 _ 3.% i. 3

at Id vii/in fd v at n+ ar Id uni/in

311/- F 3111-

_ 3 ._' _._. 3 _‘ -_

fd vv 8r n fd 0 av n 0 (4.48)

where we recall that the moment of the collision term (an/01),,“ with

respect to a collisional invariant 1p,- vanishes.We can specialize these to the

case of each moment of interest. First consider 111, =m. Since this variable

does not depend on r, v, or t, we find immediately that the moment

equation becomes

a I

8r

%fd3vmn+ fd3vmvn=0

Of

which is identified as the usual mass continuity equation.

Next we consider 1p2=mv, which depends only on the velocity v. Then

Eq. 4.48 becomes

a 3 a 3 i _

atfdvmv,-n+axjfdvvjvimn mfdvavjmn-O (4.49)

where we have chosen to employ the summation convention to handle the

vector calculus. To simplify this equation, we can write

~fdg‘vvjvimn = mfdsv (vj — uj)(v,- — u,-)n +puju,

and define the pressure tensor Pi]- by

Pij. Emfd30(13; — "1)(vj— uj)”
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This allows us to write Eq. 4.49 as

8 a a _

or in vector notation

8 3 p __

p<E +11 g)“ 7n-F— at P

—the equation of motion for the fluid.

Finally we consider 11/3=(m/2)|v—u(r,t)|2. We must be somewhat more

careful, since 1113 depends on r and t as well as v. The moment equation is

then

m an m an

[avid—own); + fd’v7(v,-— 11,-)(14— “Alta—xi =0

(4.50)

If we define the heat flux vector

qizmfd3 g(oi—uQIV—ulzn

and use the continuity equation, we can manipulate Eq. 4.50 into the form

8 a a

pcV(&+u'E)0= —E'q—P:A

where c,, =% for this ideal, single species fluid and we define

m aui 8"]

A” 2(T. ‘'12)

For convenience, we collect together the conservation equations:

2 +v.pu=0 (mass)

at

p( 58? +u-V)u— £710; - V-P (momentum) (4-51)
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256 U CONTINUUM DESCRIPTIONS

Notice that though exact, these equations are as yet incomplete, since both

P and q are given only in terms of the full distribution function n(r, v, t)

P,j = mfd3v(v, — u,~)(vj — uj)n(r, v, t) (4.52)

q, =mfd3v%(v,— u,~)|v—u|2n(r,v,t) (4.53)

Hence we next evaluate these quantities.

4.3.2 [1 A Zeroth Order Approximation: The Euler Equations [:1 We

now introduce suitable approximations to the distribution function n(r, v, t)

that will facilitate the calculation of P and q. The simplest such approxima-

tion would be to replace n(r, v, t) by the local Maxwell-Boltzmann distribu-

tion

3/2

n(r,v,t)~n0(v) _=_N(r,t)( exp( — £0- |v — uIZ)

Substituting this into Eqs. 4.52 and 4.53, we find

Pij=mfdsv (v,- — u,-)(vj —- uj)n0= N(r, t)0(r, t)8,j Ep(l',l) 8,-1-

4.2m f 4341§-<4-4>1v—u1240=0

where we have identified the local hydrostatic pressure

p(r, t) = N(r, t)0(r, t)

Thus we have closed the set of equations (4.51) to find

8p __

E + V (pll)—0

8 F

p(E +u-V)u—p; — —Vp

6

“(E +u-V)0= —(v-n)0

which are, of course, just the Euler equations for an inviscid fluid.36 But we
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THE EQUATIONS OF HYDRODYNAMICS El 257

know that real fluids exhibit dissipative phenomena such as viscosity and

thermal conduction. Therefore replacing n(r, v, t) by no(v) is not sufficient

to yield the known behavior of real fluids. We must seek a better ap-

proximation to n(r, v, 1).

4.3.3 El The Chapman-Enskog Expansion36 [II We now specify the colli-

sion term as the Boltzmann collision operator (although the technique we

describe applies to a variety of other collision operators as well):

an an F_a

-- l— n = 3 A — I ,— :

at +v 8r + m av fd vlfdmv v||o(n n‘ nnl) J(n,n)

(4.54)

One of the most popular problems in kinetic theory concerns the deriva-

tion of the equations of hydrodynamics (including the transport laws)

directly from this equation. Although Hilbert37 was the first to prove the

existence of a class of solutions to the Boltzmann equation (so-called

normal solutions) that were determined entirely by the initial values of

hydrodynamic variables corresponding to collisional invariants (mass,

momentum, and kinetic energy), Chapman and Enskog38 were the first to

develop a systematic procedure to derive the corresponding hydrodynamic

equations (and their higher order corrections) for these variables. Although

a variety of alternative schemes have been proposed to generate approxi-

mate solutions to the Boltzmann equation (including the l3-moment

method of Grad,39 generalized polynomial expansions,“0 bimodal distribu-

tion functions‘“'“), the Chapman-Enskog method (and equations) remain

the most popular scheme for generating hydrodynamic equations from

Boltzmann-like kinetic equations.

We have noted that the simple-minded replacement of n(r,v, t) by a local

Maxwell-Boltzmann distribution n0(v) is too crude for most applications.

Suppose instead that we seek an approximation to n which like no is not

explicitly a function of time,“36 but rather depends on time only through

its dependence on the hydrodynamic variables p(r, t), u(r,t), and 0(r,t) as

n(r, v, t)=n(r,v|p, u,0). More specifically, we seek a solution by successive

approximation

n=§—ln(0)+n(l)+§n(2)+ . .. (4.55)

where { is merely an order parameter to keep track of the size of the terms.

(We set it equal to I eventually.)
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258 El CONTINUUM DESCRIPTIONS

We will require that ha”, whatever it turns out to be, yield the correct

moments corresponding to collisional invariants

rii'v p

fd3v m 2 n(°)(v)= 3p“

fly—“1 5N0

Then, of course, we must also require

id,” fiivniup ""’(v)=0. 1>0

2

If we can evaluate each of the terms in the expansion Eq. 4.55, we can

compute

P1= E K’Pl'”

I=0

OO

q.-= Z K’qi”

l=0

where

Pi"Emfd3v<v.-— u.)(v.~— on“

,W-L'mfd3 %(v,~— u,-)|v—u|2n(')

Therefore all we need to do is develop a consistent scheme to calculate the

n”). To accomplish this, we decompose the Boltzmann equation (4.54) into

successive equations for the n”).

First note that if we assume that the distribution function n(r, v, t) we are

trying to construct depends on time only implicitly through p(r, t), u(r, t),

and 0(r, t), then

22 = a_" 8_P 2'1 93 + 2 if

3: 8p 8: Ba, at 80 at

We can expand each term in this derivative as

8n 1 8n(°) 8n“)

(a_p+ —ap—+"'),...

8_p t
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and then identify orders as

where the 23,/at are defined by

% E - alxihouil; $31,050, r1>0

%u,E—ujg—Zi+%—%a%gn; %u,-E%a%g), n>0

%0=—%%(ag—'I)+AUP,S")), n>0

That is, we identify the lowest order with the Euler equations (as we see

later), while higher orders correspond to the dissipative transport terms.

Therefore we can expand

8n_l 30 31 232 (0) (l) (2)

E—?(E+§E+§E+ )(n +§n +§2n + )

In a similar fashion,

(v. a a +20 8

8r m8v

Finally, we expand the collision term as

1 0° 0° n+m (n) (m) _ 1 00 n (n)

J(n,n)=—2 2 § J(n ,n )=—2- 2 §J

S n=0 m=0 S n=O

where

1000,10), no), . _ _ , "00) E 2 J(nm’ nm)

S

f,

r+s=n
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If we now put all these pieces together, we can write Eq. 4.54 as

l 80 al 232 a F a (0) (I) 2(2)

-a—I)+(V§+E av)][n +§n +§n 'l‘ ]

= i [J(0)(n(O)’n(O))+ §_](l)(n(0),n(|))+ §21(2)(n(0),n(1),n(2))+ . . . ]

{2

Now we follow the usual procedure for dealing with such ordered expan-

sions by demanding that the coefficients of each power of § vanish

separately:

(0) J (0)( "(0), n(0)) = 0

a0 a F 8

_ (0) ._ _. (0)- (l) (0) (l)

(l) atn +(v ar+ av)n J (n ,n )

80 8 8 F 8

_ (l) __1 (0) ._ _. (0= (2) (0) (l) (2)

(2) atn +atn +(v al_+ av)n J (n ,n ,n )

One can verify that such a scheme will indeed produce a solution of the

form of Eq. 4.55.

Let us examine the more practical question of how these equations can

be solved. The zeroth order equation is just

J (n(o), nlol) = 0

which yields the expected zeroth order solution

n<°>=n@=<7:-><.—'::.i”w(-—'"".;."'2)

To solve for the next order, we first note

80 a F a _ m 2 5 1a0

[Viv an‘; ally-lain” ‘Elia

I

1 1

+F(U,Uj—§8UU2)Ay-]n0

where UEV—ll. Furthermore, we note

J(‘)(n(°),n('))=Id3vlfdfl|v—v,|an0[n(')(v’)+n(')(v])—n(')(v)—n(')(v|)]

52pm]
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which is just the linearized Boltzmann collision operator L.

Therefore we must solve

l m 5 80 1 l

L[”ml=l‘é(fiU2_2)“K+F(W4_381U2)Ail"°

Let us suppose we can invert L, and continue to study the implications of

the first order solutions. Then we find”

P,§'>= - %Ak,fd3UU,UjL_'[(U/.U1—%51<1U2)"0(U)]

2p m

= - -r;(A,j- -3-a,jv-u) (4.56)

and

m2 _ m 5 00 80

q.‘-"= — Tjd’UlA-U’L ‘[11,.(2—0 UZ- 5)no(u)]a—xj = -ka—xj

(4.57)

Here we have introduced some simplifications that arise from the parity of

the integrands and formally defined the thermal conductivity k and the

shear viscosity 11.

Of course the general inversion of the linearized Boltzmann collision

operator L is quite difficult and usually involves a numerical evaluation. A

particularly simple example32 corresponds to the BGK model in which

L_'—>v_ '. Then Eqs. 4.56 and 4.57 can be evaluated to find

_Zi _fi

k_2 v’ H-mv

The hydrodynamics equations to first order are therefore

do _

at + V (pu) —0

p(—§t— +u-V)u— % = —Vp+%VpV-u+;1V2u

pcy(% +u-V)l9= -p(v-u)0+v-kv0

The equation of motion is now referred to as the Navier-Stokes equation,

and the expression for the thermal heat flux is known as Fourier’s law. For
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this reason the first order of the Chapman-Enskog method is sometimes

known as Navier-Stokes or Navier-Stokes-Fourier hydrodynamics.

Higher orders n”) can be worked out in a very similar fashion (although

the technical details become quite complicated). For example, the second

order is known as the Burnett equations.“ As we indicate later, however,

these higher order corrections to conventional (i.e., Navier-Stokes) hydro-

dynamics are rarely worth the extra calculational effort required for their

implementation.

4.3.4 El Alternative Expansion Schemes E] In the Chapman-Enskog

method, the Navier-Stokes equations (and their generalizations) appear as

first (or higher) order corrections to the Euler equations. It is natural to

develop the approximate form of the distribution function in terms of its

first five moments (number or mass density, fluid velocity, and tempera-

ture) and their gradients. That is, one demands that the distribution

function n(r,v,t) be a time-independent functional of the hydrodynamic

variables p, u, and 0. .

Certainly, to the extent that the solutions of the Boltzmann equation

approach local equilibrium, such a constraint seems appropriate. But for

highly nonequilibrium behavior, n(r,v,t) may not approach a time-indepen-

dent functional of p, u, and 0—and, indeed, the system may not be

adequately described by conventional hydrodynamics (or its generaliza-

tions as constructed by the Chapman-Enskog method).

An alternative scheme for developing approximations to the phase space

density seeks to expand n(r, v, t) about some known “zeroth order” func-

tion n(°)(r,v,t) as

n(r, v, t) = n(°)(r, v, t) 2 ap(r, t) Mp(v; r, t)

P

where the M, are some appropriately chosen complete set of functions in

velocity space (which may depend on r and t)“ The unknown expansion

coefficients ap(r, t) then play the role of state variables in this reduced

description of the system. For example, one might choose n(°)=no, the

LTE distribution, and the Mp(v) would be some appropriate set of poly-

nomials in velocity, such as the Hermite polynomials (this is the particular

approximation first studied by Grad)“5

We can obtain a set of equations for the a,,(r,t) as follows: first multiply

the Boltzmann equation (4.47) by Mp and integrate over v to obtain a set

of moment equations

3 3 _ .8”. a 3

aIfdoMpn [do at n+ fdvvMpn

8r.

—fd30v'

8M F 8M

8''’ n— ;'fd30—av—Pn= c[M,,] (4.58)
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THE EQUATIONS OF I-IYDRODYNAMICS 1:1 263

where we have transformed the collision term into

f d3vMp(v)J(n,n)= f .13., f .136, f as‘: |v—vl|annl[Mp(v’)—Mp(v)]

Since the set {Mp} is complete, all the derivatives GMp/Zlt, 8Mp/8v, and

8M’, /0r can be expressed in terms of other Mp (generally an infinite series).

It is useful to choose the Mp to be orthogonal with weight function n(o)

fd3v n<°>M,M, = 6,,

Then the first term in Eq. 4.58 simplifies to

i 3 _l 3 (9) _a_ae

atfd vMpn— atgaqfd vn MpMq- at

In practice then, one would truncate this expansion at some (usually low)

order.

By way of example, consider Grad’s 13-moment approximation45 in

which n(r,v, t) is approximated by the expansion

P-- . 2

n(rvt)=n(rvt) 1+ U 00- q’ o l— v

” ° ” 2pRT "1' pRT‘ 5RT

(the name arises since only part of the third order state variables are

retained, corresponding to 13 such variables: p, u,-, T, Pi], and q,-).

This particular approach then yields the usual conservation equations

for p, u,, and T:

0p 8 _

E + a—xi(P“.-)—O

a a

5;(P“1)+ a—xj(P".-"j+Ph-)-0

8 l 0 l

a [P(e'l' 5142)] + [puj(e+ 5u2)+ukPkj+qJ-] =0

J

Here, p.=_(31)P,-,- and the reduced stress tensor or stress deviation is pi] 2P,’-

—p8,j, which has the property that p,-,=O. The temperature is given by

T= p / Rp=2e/ 3R, where R is the gas constant. The equations for pi!- and
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764 E] CONTINUUM DESCRIPTIONS

q, are rather complex:

% +%r(u,py)+%(-g% +g—Z — g8”. gii)+ ,, +pj,g—:i

_ étSijpn—g—Zé +p(g—:; + —-§—8U%:—:)+Bp,jp=0

%+%r(u,q.)+%q,%i+%q,%3+%q.%: +RTZLJZ

+;p,-,aixrRT— + épaixiRT+ %—,Bpq,-=0

It should be noted, however, that only the single collision parameter ,8

enters. This is given by

B(RT)= %(2w)‘”f°°dxx e‘xz/2[fd0sin20c08200(x\/2RT ,0)

0

Hence in the Grad l3-moment method, the conventional hydrodynamics

equations are augmented by separate equations for the pressure tensor pi]-

and heat flux q,- which replace the traditional laws of Stokes and Fourier.

4.3.5 [3 Perturbation Theory Derivations of Continuum Descriptions [:1

Both the Chapman-Enskog and Hilbert methods can be interpreted as

perturbation expansions in the Knudsen number35

mfp

n = Es

characterlstlc length

This parameter enters the Boltzmann equation as

an (in

s(w +v-fi)—J(n,n)

Since we note that s—mo corresponds to streaming or free molecular flow,

while e—+0 corresponds to continuum flow, it is apparent that we wish to

develop approximations that are valid for small e. But since a multiplies the

derivatives in the Boltzmann equation, it is also apparent that we have a

singular perturbation problem.

Hilbert37 proposed to seek the distribution function as a power series in e

00

n= 2 s"n(")

n=0
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THE EQUATIONS OF HYDRODYNAMICS 1:1 265

This expansion yields to each order in e a sequence of equations of the

form

a 3

(n—I) . (n—1)=

at n +v 8r n Jn(n)

where

n—l

JOEO, JREZJ(n(O),n(”))+ 2 J(n("),n(”_k))

k=l

One can construct solutions to these equations and extract a continuum

theory in terms of the usual mass density, local velocity, and temperature

variables. But in Hilbert’s expansion, these quantities obey the inviscid

fluid (Euler) equations. Furthermore the expansion is asymptotic in the

sense that the solution will be valid only for certain limited regions of

space and time. Indeed, one finds that the solutions obtained by the

Hilbert expansion are invalid in just the regions that couple to the initial

and boundary conditions for the Boltzmann equation (the so-called Hilbert

paradox).

Hence one turns instead to the Chapman-Enskog method in which not

the solution but rather the Boltzmann equation itself is expanded in

powers of a. This procedure, coupled with the functional ansatz that the

distribution function depends on time only through its dependence on the

hydrodynamic variables p(r,t), u(r,t), and T(r, t), leads to the usual

Navier-Stokes-Fourier equations, the Burnett equations, and so on, to each

order in 6. Once again, however, one encounters difficulties in “connect-

ing” these solutions to initial and boundary data. Furthermore, the signifi-

cance of the higher order equations (Burnett, super-Burnett, etc.) is still

unknown, and the latter equations are rarely applied in practice.

Such perturbation expansions in e=Kn are basically different from the

expansions used to linearize the Boltzmann equation.35 In the latter case,

one essentially expands in a parameter characterizing the deviation of the

initial or boundary distribution from a global Maxwell-Boltzmann distri-

bution. There have been numerous studies of the convergence properties of

the Hilbert and Chapman-Enskog expansions for linearized kinetic equa-

tions.4°'47 However the application of such perturbation expansions to

complicated nonlinear equations such as the Boltzmann equation is a

difficult mathematical problem that continues to receive active study.

4.3.6 [I Generalized Hydrodynamics Equations [1 We noted earlier in

this chapter that the derivation of the diffusion equation from a linear

transport equation could be interpreted as a projection of the phase space
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266 El CONTINUUM DESCRIPTIONS

density n(r,v, t) onto a reduced description in terms of continuum variables

such as the particle density N(r, t). The concept of a projection from a

phase space to a configuration space or hydrodynamic description was

formalized and used to derive an exact generalized diffusion equation. We

also noted in passing that the same technique can be used to develop

generalized hydrodynamics equations from the linearized Boltzmann equa-

tron.

More specifically, one can project the solution of the linearized Boltz-

mann equation onto an absolute equilibrium distribution, weighted by the

usual collisional invariants corresponding to mass, momentum, and kinetic

energy.”30 This yields a set of exact (but formal) linearized hydrody-

namics equations in which the transport coefficients (viscosity, thermal

conductivity) become space- and time-dependent kernels in integral terms.

Moreover there are initial value terms in these generalized hydrodynamics

equations that cannot be specified in terms of the initial values of hydrody-

namic variables alone (i.e., that do not correspond to Hilbert’s normal

solutions”). If the transport kernels are expanded in terms of the spatial

gradients of hydrodynamic variables, one recovers the conventional trans-

port laws and their generalizations (i.e., Navier-Stokes, Burnett, etc.). Such

an approach is useful not only because it provides an alternative derivation

of the well-known Chapman-Enskog results, but it also suggests alternative

types of approximate transport laws that are more capable of describing

large frequency,"8 short wavelength phenomena. Moreover a study of the

initial value terms reveals the manner in which a gas approaches a

hydrodynamic state, thereby providing a direct resolution of the Hilbert

paradoxsm‘ That is, this approach explains in what sense the initial values

of p, u, and T alone are sufficient to determine n(r, v, t) for later times.

This section demonstrates that very similar techniques can be used to

develop exact, generalized hydrodynamics equations from the full nonlin-

ear Boltzmann equation (or similar nonlinear Boltzmannlike equations).

However such a development requires a generalization of the usual con-

cept of a projection operator to allow the projection onto time-dependent

(e.g., local thermodynamic equilibrium) states. Such “projections” then

become time dependent as well as nonlinear functionals of the phase space

density n(r, v, t) itself. Such operators, though certainly rather awkward in

many respects, are not completely unfamiliar because Robertson,49

Piccirelli,50 and others51 have utilized them in nonequilibrium statistical

mechanics (albeit in a formal sense) to derive generalized transport laws.

This section introduces the concept of a projection onto LTE states, then

applies it to the Boltzmann equation to generate an exact set of generalized

hydrodynamics equations. To provide a very concrete application of these

equations, we demonstrate that the more conventional nonlinear hydrody-
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THE EQUATIONS OF HYDRODYNAMICS 1:] 267

namic descriptions (i.e., Navier-Stokes and Burnett) are easily generated

by this procedure.

We begin by assuming that the gas can be adequately described by the

Boltzmann equation (4.47) (or a similar Boltzmannlike equation). Actually,

the following analysis uses only very general properties of the collision

term J(n,n) that would apply to any collision operator (e.g., the Fokker-

Planck operator) that models collisions as point, instantaneous processes.

Of course J(n,n) in general will be a nonlinear operator. The external force

F(r,t) could also depend on n(r, v, t), as, for example, in the Vlasov

equation.

Our goal is to derive a set of generalized hydrodynamics equations for

the traditional hydrodynamic variables corresponding to mass density,

local flow velocity, and temperature. We have noted that these quantities

can be related to averages of the various collisional invariants 41,.(v) over

the phase space density, which we can denote symbolically by

an, r)= f d31>t]/,(v)n(r,v,t)

For classical point particles, we choose the collisional invariants 4}] =m,

¢2=mv, and ¢3=§m|v—u|2. These yield the corresponding macroscopic

variables ‘I'|(r, t) = p(r, t), ‘112(r, t) = p(r, t)u(r, t), and ‘113(r, t) =

(3 / 2m)p(r, t)0(r, t).

One of the first key results of kinetic theory was the demonstration that

for long times compared to the mean time between collisions, the phase

space density n(r,v, t) approaches a time-independent functional of the

hydrodynamic variables, n(r,v|‘I',-(t)) that corresponds to a local thermody-

namic equilibrium

no(r,v|p,u,0)=M[ m ]3/zexp[ _ m|v-—u(r,r)|2

m 2'rr0(r, t) 20(r, t)

Notice that the variables that appear in n0 correspond to the true hydrody-

namic variables. Hence no(r, v, t) is defined such that

‘IQ-(r, t)E f d3v¢,-(v)n(r,v, t)= f d3v¢,(v)no(r, v, t)

Thus n0(r, v, t) contains essentially all the information one needs to calcu-

late the hydrodynamic variables n, u, and 0. Our goal is to derive an exact

equation for n0(r, v, t) from the Boltzmann equation (4.47) for n(r,v,t).
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268 1:] CONTINUUM DESCRIP'ITONS

To begin, let us write the Boltzmann equation Eq. 4.47 in the symbolic

notation

% = — Sn +J(n,n) (4.59)

where S =v-(8/8r)+ (F / m)-(8 / 8v) is the streaming operator and J is the

collision operator. Next we introduce an operator P(t), which is defined by

its action on an arbitrary function g(r, v, t) as

_ an, 3

P(t)g(r.v.r)-

T] [d 011,-(v)g(r,v, 1)

Notice that P(t) has the property that

an _ an, 3 an _ ano

P(t) a, —? aq’j fd Ulllj-(Iow— at

Thus in a sense P(t) projects the time derivative of the phase space density

fin/Ht onto the time derivative of the LTE density 8n0/8t.

To proceed further, suppose we define the deviation of n(r,v, t) from

equilibrium such that

n(r, v, t) = n0(r, v, t) + n1(r, v, t) (4.60)

We will now operate with P(t) on the Boltzmann equation (4.59) and use

Eq. 4.60 to find

PE=—ét—=—PSno—PSnl+PJ[n,n] (4-61)

But notice that

an

PJ(n,n)=2-—-l dsvtb,(v)J n,n =0

1 011,] l 1

since the 111,-(v) are collisional invariants. Hence Eq. 4.61 simplifies to

a-g'tfi + PSn0= - PSnl (4.62)

To derive the generalized hydrodynamics equations, we now follow the

usual approach and take the moments of the “projected” transport equa-

tion with respect to each of the collisional invariants 111,-(v). Avoiding

cumbersome details, we merely note the resulting form of these moment
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THE EQUATIONS OF HYDRODYNAMICS 1:1 269

equations here:

8p _

E +V (PLO—0

i . _£ __ l. 3 _ _

p( at+u V)u+Vp mF- mar fd0(v u)(v u)n|(r,v,t)

‘(3 +u-v)0+ -P_(v-u)0= - 21

a 3 Z _ 2 _

at r fd03|v u| (v u)nl(r,v,t)

c,, c,, 8

2 3 _ “'2 _ 5mfd 0(v—u)(v u)n1(r,v,t) 2 ( axj + axi

Thus we have arrived at a set of hydrodynamiclike equations—except that

the transport terms are still expressed in terms of an unknown function

n|(r, v, t).

If we subtract our projected equation (4.62) from the Boltzmann equa-

tion (4.59), we arrive at an equation for n|(r, v, t)

% +[1-201181.—L(n..n.)—J(npnl>= -11—P<’>15"1

(4.63)

where we have identified L(n0,n,)=J(nO,nl)+J(n1,n0) as the usual lin-

earized Boltzmann operator. We must now solve Eq. 4.63 for nl in terms of

no. Since J(n|,nl) is a nonlinear operator, it is not possible to explicitly

represent the inversion as a linear operator. Instead we formally write (for

the present)

nl(r,v,t) = 621(1, O)n|(r, v,0) - [0214 600,4” 1 ~ 1>(T)]sn,(¢) (4.64)

Hence to complete our derivation of generalized hydrodynamic equations,

we must evaluate the “transport law”-like terms. This requires a rather

tedious calculation of (l —P)Sn0. We once again avoid details and note

only the final form of the resulting generalized hydrodynamics equations:

8p __

E 'I'V (plI)—0

3 P __ , ,

p(5;+u V)u+Vp ;F— V P +"I)u(r,t)

pcV( % +u-V)0+p(V~u)0= - V-q—AzP’ + 60.0.1) (4-65)
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where we have identified the generalized transport laws

Py'-(r,t)E](;Id1-[0 _'fd3v lij-(r,v,t)Ql(I,1')1k/(l'4V’T)"o(T)lAklll'rT)

+ f0'.h[0 '2fd301|1(r,v,t)6?l,(t,'r)Jk(r,v,t)n0('r)] 812w)

q,(r,t)_=_ fo’thla -' f 4361,.(nv,1)Q1(1,4)5,(r,v,1)n0(4)]A,,(r,4)

+Lapflfdlnrinv,1)911.(1,4)4(1,v,4)n0(4)]gins)

(4.66)

Here we have introduced the following convenient definitions:

A.)- ), PE-prg, UEv—u(r,t)

er.

Ln_( all,

11(T’VJ)E(% U2—§0)U,-, IU-(r,v,t)Em(U,Uj—%8UU2)

The functions 61),,(r, t) and 6D,.,(r, t) in Eq. 4.65 are the initial value terms

corresponding to 611 ( t, 0)nl(r, v, 0).

It should be stressed again that the generalized hydrodynamics equa-

tions are an exact consequence of the original transport equation (4.47).

However they are also of only formal interest until we introduce suitable

approximations. To illustrate the usefulness of this formalism, let us

demonstrate how these equations can be used to develop the conventional

Chapman-Enskog approximations. Since we have already extracted n0 in

our formalism (i.e., the Euler equations), we can move directly to the

calculation of the Navier-Stokes and higher order terms by writing Eq.

4.63 as

8n,

w + [ l — P(t)]Snl —L(n0,nl)—J(n|,n|)= —[l—P(t)]Sn0

= -0-'1=A-0—2J-v0

(4.67)

To obtain the Navier-Stokes equations, we retain only lowest order terms
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THE EQUATIONS OF HYDRODYNAMICS [l 271

in Eq. 4.67 to write

— L(n0,nl) = — [ l — P(t)]Sn0

or

n|(t)= —-L_'|:l—P(t)]Sn0

In terms of our propagator representation Eq. 4.64, we can identify that to

this order

62L(z,¢)=8(t—¢)L-‘

Thus our transport laws of Eq. 4.66 become

Pij’.=0_'[fd3vIyL_'lk,n0]Ak,+0—2[fd301UL'1Jkn0]%

q.=0-'fdavJ.L-'1.n A-+0_2 [fut-'1.» 6—0

I I jk 0 [k | j 0

Since L is isotropic, we note

fd3vI,-J-L_‘Jkn0=0= f fuzz-'11.”,

Furthermore, we can identify the usual transport coefficients

_ _l_ 3 , —l

k-(302)fdvJL Jno

and

_ L 3 . -1

p-(100)fdvI.L [no

to arrive at the standard Navier-Stokes-Fourier transport laws

q=—kV0

P'=—(2—:)(A—L;—IV-u)

To calculate the next order corrections (the Burnett equations), we must

actually take into account the non-Markovian behavior. First write

% "L(”0’"1)= — [1- P(')]S"o(t)-[1—P(l)]Sm(r)+J(n..n.)
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272 1:1 CONTINUUM DESCRIPTIONS

We can now solve for

n|(t)= —j(;'d'r19(t,r)[1 - P(t-—r)]Sno(t—r)

-f0'd¢0(1,¢)[1-P(1-¢)]sn,(1-¢)

+ f()ld1-0(t,r)J[n|(t—r),nl(t-—r)]+6D(t) (4.68)

where 19(t,'r) is the propagator for the linearized Boltzmann equation

as

E-qnonpso-T)

[Note here that since no=n0(t),L—>L(t), and we cannot write this as the

usual exp(+ tL) without time ordering] To obtain the Burnett terms, we

iterate Eq. 4.68, then expand the non-Markovian integrals in Taylor series

expansions about t:

n|(t)= —j(;ldr19(t,r)[[1—P(t)]Sno(t)+1-%[l—P(t)]Sn0(t)+ - --

+j(;ldrfi(t,r)[l—P(t—r)]S'/(;'d'r’i)(r,r')[l—P('r’—'r)]Sn0('r’—r)

+ L'd66(1,6)1]f0'.166(t,6)[1- P(t)]Sn0(t),

>< f0‘d66(1,6)[1 - P(t)]Sn0(t)] + - -- + 60(1)

If we now take the Markovian limit by letting the upper limit in the

integrals approach infinity and define

Lwdr§(t,r)EB_l, (“almanac—2

we can write

n|(t)= 12-'[1—P(t)]sn,,(t)+ B-'% [1 —P(t)]Sn0(t)

+e—'[1-P(t)]se-l[1—P(t)]sn,,(1)

+B—'J[e—1[1-P(r)]sn,,(1),e—'[1-P(t)].sn0(t)] + - -- +690)
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SOME CONCLUDING REMARKS E] 273

We then use once again

[1— P(t)]Sn0(t)=0 "I:A+ 0 _2J-V0

to arrive at the Burnett terms, which take the form

8

q= —kV0+yEV0+XV-A+ - ~-

P= —2;1A+£%A+¢VV0+ - --

where the transport coefficients are given by

k=(302)"(J-B_ 'J), 11=(100)—'(1=(3—‘1)

7=(302)_'(J'[‘3_2J), x=(50)~'(JB-'(1- P)11(1- P)1°.—' =1)

g=(50)-'(1113—11), ¢=(502)-1(1; e-'(1 —P)1fl(l -P)13-'.r)

with

(f,8)E fdtvnavwogrv)

Finally, we note that the foregoing method for contracting the transport

equation to a continuum description has a far wider range of applicability.

For example, it can be used to project the solution of any time-dependent

equation (e.g., the Liouville equation) on a restricted or contracted form of

solution that can be written as a time-independent functional of moments

of the original solution. For example, it could be used to express the

ensemble density p(I‘, t) as a time-independent functional of the phase

space density n(r, v, t), thus yielding a generalization of Bogoliubov’s

ansatz.52

4.4 1] SOME CONCLUDING REMARKS E1 Continuum descriptions

of transport processes play an extremely important role in science and

engineering. Indeed, they are usually sufficient for the description of most

physical phenomena. For example, the conventional hydrodynamics equa-

tions (e.g., the Navier-Stokes equations) rarely break down in the descrip-

tion of fluid flow processes. Neutron diffusion theory has become the

mainstay of nuclear reactor engineering.
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274 [I CONTINUUM DESCRIPTIONS

However continuum descriptions sometimes fail quite badly. For exam-

ple, the diffusion of neutrons in a nuclear reactor core is certainly not

described by the traditional form of the diffusion equation. Rather, the

coefficients in this equation (i.e., the diffusion coefficient and macroscopic

cross sections) and its corresponding boundary conditions must be

adjusted (in effect, “fudged”) to take account of transport effects. Without

such transport corrections, diffusion theory would simply be inadequate

for the analysis of neutron diffusion in nuclear systems.3

A second example of the limited utility of continuum descriptions of

particle transport arises in the physics of high temperature plasmas. In

such systems, collision effects are so weak that they are usually unable to

force the distribution function characterizing the plasma particles (ions

and electrons) into even a local thermodynamic equilibrium. Hence the

traditional hydrodynamics equations are clearly inadequate for describing

such a system (although once again they are frequently applied by adding

“transport corrections” such as dissipative coefficients to characterize

Landau damping).53

As a final example, one frequently encounters situations in rarefied gas

dynamics in which the mean free path is sufficiently large, or gradients or

rates are sufficiently large, that a hydrodynamic description is inadequate,

and a more detailed analysis based on kinetic theory must be performed.23

Therefore there are a variety of situations in science and engineering in

which we must face the horrifying task of attacking the transport equation

directly, without invoking a continuum description. The methods used to

analyze such transport problems, the nature and extent of approximations

or modeling, depend sensitively on the particular application. However a

few general features of transport problems and the methods used to

analyze them prove to be useful in a large variety of situations. We develop

and discuss these features as we analyze initial and boundary value

problems in transport theory in Chapter 5.

El PROBLEMS [I

4.1 Verify the angular integrals

A 47]‘ A A A, A, A A’ _

fdnn,.oj=(?)s,j, fdnofdn 2,(n -n)¢(o )=,10>3,J

used in the derivation of the one-speed diffusion equation.

4.2 Imagine a diffusing medium in the half-space x>0 with a source of

infinite magnitude at infinity such that the boundary condition on the flux
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PROBLEMS El 275

is that ¢(x)~S0exp(x/ L) as x—>oo. (This is of course just the Milne

problem.) Obtain the flux in this half-space using one-speed diffusion

theory using first the boundary condition of zero reentrant current, then

using the extrapolated boundary condition. Determine the conditions

under which these two boundary conditions might be expected to yield

similar results.

4.3 Compute the root-mean-square distance ((x2>)'/2 a particle will travel

from a plane source to absorption using one-speed diffusion theory.

Compare this result with the rms distance to absorption in a strongly

absorbing medium (in which scattering can be neglected).

4.4 Consider the time-dependent P, equations in plane geometry.

Eliminate one of these equations to obtain an equation for the flux q>(x, t)

and compare this equation with the one-speed diffusion equation. In

particular, discuss differences in the solutions to these equations.

4.5 Determine the relaxation constants 1:]- for one-speed, isotropic scatter-

ing, plane symmetry, and no time dependence for both the P, and the P3

approximations. Indicate the general form of the P, and P3 total flux in an

infinite medium with an isotropic plane source at the origin and compare

this with the one-speed transport results.

4.6 Derive the PN equations for the transport equation in spherical coordi-

nates (assume spherical symmetry for convenience).

4.7 Solve the Milne problem (Problem 4.2) for a nonabsorbing medium

with isotropic scattering in the PI and the P3 approximation. Compare

both results in various regions of interest.

4.8 Derive the general form of the PN equations in three-dimensional

Cartesian geometry.

4.9 Prove‘ the three identities involving the projection operator P0 E

(4'11)—l f dflo given on page 240.

4.10 Apply the projection operator method to the linearized Boltzmann

equation to derive the generalization of the linearized hydrodynamics

equationszg'ao

4.11 Demonstrate the physical implications of the choice of the Eddington

factor asf=l andf=§.

4.12 Provide the details necessary to manipulate the moments of the

Boltzmann equation with respect to the collisional invariants m,mv,

%m|v——u|2, into the form of the conventional hydrodynamics equations.

4.13 Demonstrate the explicit form given for C[M,,].

4.14 Determine the Chapman-Enskog solution to the BGK model to first

and second order.
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276 l] CONTINUUM DESCRIPTIONS

4.15 Determine the transport coefficients k and it within the BGK model

and compare the ratio p/ k with the value obtained from the full Boltz-

mann collision term.

4.16 Sketch how you would obtain the next order correction to the

Navier-Stokes equations using the Chapman-Enskog expansion.

4.17 When an ideal monatomic gas undergoes an adiabatic process, ther-

modynamics implies that the temperature and density are related by

p~ T3”. Demonstrate that the hydrodynamics equations to first order in

the Chapman-Enskog expansion also satisfy this relation.

4.18 Derive the Grad l3-moment equations.

4.19 Specialize the Grad 13-moment equations to the case of zero flow

(u=0) and develop the corresponding corrections to Fourier’s law.

4.20 Prove that the time-dependent projection onto the LTE state has the

property that P( t)(8n / 8t) = 8n0 / 8t.

4.21 Provide the details in the derivation of the “projected” moment

equations (4.65).
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USE]

Basic Problems

in Transport Theory

We have confined our attention thus far to solutions of the transport

equation under very idealized assumptions. For example, we considered

the transport of particles when scattering processes could be ignored

entirely or when the energy dependence of the particle phase space density

was of secondary concern. When space and time variations are sufficiently

weak, we found that we could remove the angular dependence of the

transport process by developing various continuum or hydrodynamic de-

scriptions.

We now investigate transport processes in which both the particle speed

and flight direction must be considered, that is, neither one-speed nor

hydrodynamic approximations are valid. Needless to say, a general analyti-

cal solution of most of these problems is usually out of the question.

Indeed, even brute force numerical methods frequently prove inadequate.

Fortunately in many cases we can use the known properties of the

transport equation to infer a good deal about its solutions, even though we

may be unable to determine a solution in complete detail.

First we examine a class of problems in which the details of the initial or

boundary conditions can be ignored. Such problems involve “asymptotic

relaxation” phenomena in which a disturbance is introduced into the

particle distribution, and one studies the spatial or temporal relaxation of

this disturbance to equilibrium or quasi-equilibrium behavior. These prob-

lems are of particular mathematical interest because they are intimately

related to the eigenvalue spectrum of the corresponding transport operator.

They provide information that facilitates the study of more general and

complicated problems.

We then consider typical initial and boundary value problems that arise

in a number of areas of particle transport and discuss analytical tools

available for the study of such problems. One particular subject of interest

is the study of the transport of particles that are initially characterized by

kinetic energies very much in excess of the thermal energies of the host

medium—“superthermal” particle transport. We deal with both the spatial

transport and subsequent slowing down of such particles.

1:1 279
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280 El BASIC PROBLEMS IN TRANSPORT THEORY

5.1 [1 ASYIVIP’TOTIC RELAXATION PROBLEMS (EIGENVALUE

PROBLEMS) El

5.1.1 El Neutron Transport [1 We begin by recalling that the transport

equation describing the diffusion of neutrons through a medium can be

written as follows:

28-’; + v-Vn + oE,(v)n(r, v, t) = '[d3o’ v’ES(v’—>v)n(r, v’, t) + s(r,v, t)

(5.1)

where any fission sources are included in s(l', v, t). We have already noted

that the dependence of the cross sections on neutron speed can become

quite complicated. Hence the solution of the general velocity-dependent

transport equation (5.1) is no easy matter—particularly for realistic cross

section behavior. However there is one class of problems to which this

equation can be applied and studied in essentially its most general form:

the transport theory of asymptotic relaxation phenomena in neutron ther-

malization.

Such problems typically involve the injection of a burst of neutrons

(usually fast neutrons) into a sample of material. One studies the relaxation

or decay of the asymptotic neutron distribution established in the sample.

This process can occur in either space or time, and it corresponds physi-

cally to familiar experimental procedures used in neutron physics (e.g., the

measurement of the neutron diffusion length in a material, or experiments

performed with pulsed neutron sources).

Asymptotic relaxation phenomena are of major theoretical interest be-

cause they play an important role in the general subject of kinetic theory.

In the case of neutron transport they correspond to the relaxation of a

foreign gas (the neutron gas) to thermal equilibrium in a background

medium. Their asymptotic nature allows one to avoid a detailed confronta-

tion with boundary conditions and to focus instead on the energy depen-

dence of the transport process/ The study of such asymptotic decay or

relaxation processes is ideally suited to the mathematical technique of

eigenfunction expansions and stimulates a thorough study of the spectral

theory of the transport operator. To provide a physical foundation for the

types of problem we are going to consider, it is useful to briefly describe

several of the physical situations that give rise to these relaxation

processes.
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ASYMPTOTTC RELAXATION PROBLEMS El 281

i Pulsed neutron experiments. H This work involves the injection of a

burst of fast neutrons into a sample of material, followed by measurements

of the time decay of the neutron population in the sample as neutrons leak

out or are absorbed. After a certain length of time, one expects to find an

exponential decay of the form N(t)~N0e_)" (see Figure 5.1a). In the usual

experimental procedure this “time relaxation parameter” A is measured as

In N(t)

2 '1 r e—M

l I A o

+O o

4’:

l

(a)

lnN(x)

_ e—KX

] —o — o )—

x

(b)

lnN(x, t)

—rtx 4» lost

(c)

Fig. 5.1 1:] Asymptotic relaxation experiments in neutron transport. (a) Pulsed

neutron. (b) Diffusion length. (0) Neutron wave.
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282 El BASIC PROBLEMS IN TRANSPORT THEORY

a function of sample size in an effort to infer information concerning the

manner in which neutrons interact with the material in the sample (e.g.,

cross section information).

ii Diffusion length experiments. "5 In these experiments one places a

time-independent neutron source up against one end of a column of the

material of interest, then measures the spatial attenuation of the neutron

density established within the material by the source. Again, at large

distances from the source one expects to find an exponential decay

N(x)~N0e_“. (Figure 5.1b.) This “spatial relaxation parameter” 1: is then

measured, usually as a function of absorption (which can be varied by

adding small quantities of a strong neutron absorber to the column).

iii Neutron wave experiments.Hr In these variations on the diffusion

length experiment, a time-modulated component is added to the source,

say of the form exp(iwt). This modulated component excites a time-depen-

dent disturbance in the neutron distribution within the column that will

also be modulated as exp(iwt). But since it takes a finite time for neutrons

emitted by the source to wander down the column, there will be a phase

lag relative to the source. Therefore it becomes possible to measure not

only the spatial attenuation of this oscillating component, but its phase lag

relative to the source as well. Again we expect to find exponential relaxa-

tion at large x, N (x, t)~N0 exp(— xx + iwt), but now the relaxation parame-

ter 1: will be complex. Hence the asymptotic form of this disturbance is in

the form of a damped plane wave running away from the source (Figure

5.1c). Now one measures the “complex spatial relaxation parameter” 1:

characterizing this “neutron wave” as a function of source frequency.

(Note that for w=0, this becomes just the usual diffusion length experi-

ment.)

These three experiments have a number of features in common. They are

all asymptotic in the sense that all measure the decay or relaxation of the

neutron density either at long times or at large distances from the source.

All three experiments implicitly assume that this asymptotic behavior will

be exponential, then attempt to measure the relaxation parameter char-

acteristic of this exponential decay as a function of some independent

experimental variable (system size, absorption, or source frequency). Then

by comparing the experimentally measured relaxation parameter with

theoretical calculations, presumably it is possible to measure various in-

tegral transport parameters of the sample (absorption rates, diffusion

coefficients, moments of the scattering kernel, etc.).

A very major question whenever such experiments are performed con-

cerns the existence of such asymptotic exponential behavior. That is, if we
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ASYMPTOTIC RELAXATION PROBLEMS 1:1 283

wait long enough or make measurements sufficiently far from the source,

will we indeed see an exponential decay in the neutron density? Further-

more, we must determine just what macroscopic integral transport parame-

ters (e.g., diffusion coefficients) are involved in the calculation of the

appropriate relaxation parameters.

In our analysis of such asymptotic relaxation experiments using the

neutron transport equation, we demonstrate that its mathematical formula-

tion takes the form of an eigenvalue problem. However it would be

inappropriate to continue further without mentioning yet one more class of

eigenvalue problem that plays an extremely important role in neutron

physics although it does not involve an asymptotic relaxation process,

namely, the criticality problem.

iv The criticality problem.9 Probably the most important eigenvalue

problem encountered in neutron transport theory arises in the study of

nuclear fission chain reactions. Mathematically, the neutrons produced in

fission reactions appear as an effective source term in the neutron trans-

port equation that takes the form (cf. Section 1.4)

FnEx(v)fd3v’11(0')0'2f(0')n(r,v’,t)

Of key concern is the determination of the combination of system com-

position and geometry that will yield a steady state or “critical” chain

reaction (i.e., a nontrivial solution to the time-independent transport equa-

tion). It is customary to formulate this calculation as an eigenvalue

problem by introducing a free parameter k into the transport equation

with a fission source, written as

Ln=—11;Fn

where L is the usual time-independent transport operator. Here, k is

referred to as the multiplication or criticality eigenvalue. Then if we adjust

system composition and geometry so that the eigenvalue k=k0 corre-

sponding to an everywhere positive solution n0(r,v) is equal to one (k0= l),

we achieve a critical chain reacting system. (It is customary in reactor

physics9 to refer to this eigenvalue as the “effective multiplication factor”

and denote it by k0= ken.)

We now study in some detail the mathematical analysis of each of these

problems by utilizing the appropriate form of the neutron transport equa-

tion. We begin by examining the steady-state or equilibrium solutions to

the transport equation characterizing an infinite, uniform medium.
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284 [:1 BASIC PROBLEMS IN TRANSPORT THEORY

Stationary Neutron Themralization in an Infinite Medium‘l'"H2 [1 An im-

portant problem in nuclear reactor studies involves the determination of

the energy dependence of the neutron density (or flux) that is established

in an infinite homogeneous medium by a time-independent, spatially

uniform source. It is customary to assume that the source neutron energies

are far in excess of the thermal energy of the nuclei comprising the host

material (E >>kT), and on occasion the source is taken to be just the

fission neutron spectrum X(E). If we integrate the appropriate form of

the‘ transport equation (5.1) over angle SZ=v/|v| and define N(v)=

fdfl vzn(r,v,Sl), we arrive at the infinite medium neutron spectrum equa-

tion:

[n2,,(6) + nz,(n)]1v(e) = f0°°de'n'2,(v'_>n)1v(e') + s(6) (5.2)

Of course this equation represents the classic problem of neutron thermali-

zation in which one studies the energy spectrum of neutrons as they slow

down into thermal equilibrium with a host material. It is the problem of

most interest to thermal reactor calculations, and to the generation of

multigroup cross sections in particular. However since it is not a transport

problem in the strict sense, but rather a problem in the neutron speed

alone, our study of Eq. 5.2 will be rather cursory.

Of course an integral equation such as Eq. 5.2 can be very difficult to

solve in general if the full complexities of the cross section dependence on

neutron speed are included. One must usually resort to some kind of an

approximate model of 2,(v’—>v). However there are two limiting cases we

can study without resorting to such approximations.

i Zero absorption and sources: Ea(v)=0 and S(v)=0. If we recall the

detailed balance condition that must be satisfied by the scattering cross

section (cf. Section 3.1), it is apparent that the only solution to

vZS(v)N(v)= Lwdv'v’Z,(v'—>v)N(v’)

is just the Maxwell-Boltzmann distribution at the temperature T of the

host medium

_ _ 4 m 3/2 2 _ mv2

N(v)—noM(v)-no—\/—;—(m) 0 exp(

Hence detailed balance ensures that the only solution to the “equilibrium”
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ASYMPTOTIC RELAXATION PROBLEMS El 285

problem is M(v). Of course, sources, absorption, leakage, or time depen-

dence can cause deviations from equilibrium and can give rise to more

general solutions N(v).

ii Large v>>(kT/m)'/2. For large 0, we enter the neutron slowing

down regime and (as we demonstrate in Section 5.3) the neutron speed

dependence assumes the asymptotic form N(v)~l/02. Therefore in gen-

eral we expect the solution to vaguely resemble a Maxwellian with a l /v2

tail.

To obtain more information about the steady-state neutron spectrum, one

must resort to either numerical techniques or very approximate models of

the scattering kernel (e.g., the proton gas or heavy gas models“). We defer

a discussion of these approximate methods to Chapter 7 and continue to

examine time- and space-dependent relaxation problems.

Time Relaxation Phenomena in Neutron Thermalization E1 The prototype

relaxation problem in neutron physics involves the time behavior of a burst

of fast neutrons injected into a sample of material. These neutrons suffer

collisions with the nuclei in the sample and slow down in energy until they

are absorbed or leak out. The corresponding neutron density evolves in

time and eventually approaches a Maxwell-Boltzmann distribution in

energy (characterized by the temperature of the sample), all the while

decaying away in magnitude because of absorption and leakage. We can

identify the mathematical description of this process as just the initial

value problem (or Cauchy problem) for the neutron transport equation

3_n

at +v-Vn+v2,(v)n(r,v, 1)= fd3v’v’Es(v'—>v)n(r,v',l) (5.3)

subject to a given initial condition (i.c.) corresponding to the pulsed source

i.c.: n(r,v,O) = no(r, v)

and suitable boundary conditions (b.c.) such as those characterizing a free

surface

b.c.: n(R,,v, t) =0, és-v < 0

This is an extremely difficult problem to solve in general. A direct

confrontation with the time-dependent transport equation in all its glory

(or horror) is perhaps too much at this early stage. Instead, let us ease

more slowly into the concepts and mathematical techniques necessary for
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36 1:1 BASIC PROBLEMS IN TRANSPORT THEDRY

analyzing such problems by working our way up a ladder of somewhat

simpler problems:

i Time relaxation in an infinite medium.

ii Time relaxation assuming asymptotic transport theory.

iii Time relaxation in bounded geometries.

Naturally we begin with the simplest problem, time relaxation in an

infinite medium.

Time relaxation in an infinite medium E] The mathematical statement of

the problem of time relaxation of a spatially independent initial distribu-

tion of neutrons in an infinite medium involves the solution of

8N

W + 62,(6)1v(6,1) = Kdv'6'2,(6'_>6)1v(6',1) (5.4)

subject to a given initial condition: N(v,0)=N0(v). One can analyze this

problem in a manner very similar to the one-speed transport model by

applying integral transforms (in this case, a Laplace transform in time) or

separation of variables and eigenfunction expansions. To illustrate these

approaches, we first consider a simple example in which the scattering

kernel is modeled by a separable kernel of the form.4

Es(v'->v) = BE,(v')vM(v)Z,(v), ,B _ l E Loodv vM(v)Z,(v)

so that Eq. 5.4 becomes

(la—1:, +vE,(v)N(v,t)=BE,(v)vM(v)fwdv'v'Z,(v’)N(v',t) (5.5)

0

Let us first try the integral transform approach by defining the Laplace

transform

~ oo

N(v,s) =f dte_"N(v,t)

0

Then our transformed equation (5.5) becomes

[s + 01(0)] N(v,s) = ,BEs(v)vM(v)j(;°°dv' v'Z,(v')N(v’,s) + No(v)

(5.6)
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ASYMI’TOTIC RELAXATION PROBLEMS El 287

We can solve this simple integral equation in the usual way by first

dividing through by s+oE,(o), then multiplying through by oEs(o), and

integrating over 0 to find (after some rearrangement):

00,) 02.011160)

- _ ee - _ 0 s+vE.(v) : xo)

dDUE;(1-7)N(U,s)_ 1 00d 02[2:(0)12M(0) — _ ‘BIO o s + oE,(o)

(5.7)

Hence the transformed solution can be obtained from Eq. 5.6 as

mm): 1124616440) x(s) N010) (5,)

s + oZ,(o) A(s) s + 02,(o)

All we have to do rrow is to invert this Laplace transform. Actually, since

we recognize that R(s) as given by Eq. 5.7 is just the response of a detector

with cross section 23(0), it is convenient at this point to study the inversion

of this “detector response” function

R(t)= f‘j‘waeer'rio)

[the inversion of the full solution (5.8) is only slightly more complicated].

We must determine the analytic structure of R(s) in the complex s-plane

to determine how to deform the Bromwich inversion contour. We begin by

noting that both X(s) and A(s) contain a Cauchy integral of the form

fwd” f(v)

0

s+ oE,(o)

Thus we can identify a branch cut for s=—oE,(o), oE[0,oo). Since

neutron cross sections behave as l/o for small 0 (cf. Section 3.1) and

approach a constant value at large 0, we find that the Cauchy integral

gives rise to a branch cut along the negative real axis from —A* to — 00,

where

NE min [01(0)]

oE[0,oo)

Notice here that 21* defines the lower bound to this cut. We will find that

this is a general feature of time-dependent transport problems.
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288 1:] BASIC PROBLEMS IN TRANSPORT THEORY

Next we must determine whether E(s) has any isolated singularities such

as poles [i.e., zeros of A(s)]. We can distinguish between two cases:

1 /v Absorption Ea(v)=22/ 0 (which is not necessarily a bad approxima-

tion). Then it is evident that s= —22 is the only zero of

A(s). We later show that for 1 /v absorption, s= —22 is

always the least damped pole, although for more general

2,(v'—>v) there may be additional poles.

Non-1 / v absorbers Again there is one zero of A(s) on the negative real

axis between —A* and 0. However there is no longer

a closed-form expression for this zero.

Therefore we find that E(s) has a simple pole at s= —}\0 and a branch cut

from —J\* to — 00 (see Figure 5.2). We can deform the inversion contour

in the usual way to find

R(i)=aoe-~+ f°°dxA(>.)e-~

A‘

where we can calculate

A+(>.) A-o.)

%=a—al%§_h

11 Mm_1[xwu xtu]

In particular, we should note that for long times

R(t)~aoe_>‘°‘ +0(e_>‘")~aoe_)‘°‘

which is the desired exponential behavior. _

The inversion of the solution for the density N(v,s) as given by Eq. 5.8 is

only slightly more complicated due to the presence of an additional simple

pole at s= — vZ,(v); therefore we give only the final result:

32.090114 (0)

N(v,t)= ao————[ 02(0) _}\01

e-~r+ fjdxaot,v)tr2,(v)vM(v)e“'

+No(v)e_”E'(”)'

We note parenthetically that the integral or “transient” term can be

attributed to neutrons slowing down from the source energy, whereas the
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[1289

.r—Plane
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‘

—)\ —)\0

(b)

Fig. 5.2 [l s-Plane structure (a) and deformation (b) of Laplace inversion con-

tour.

last term is obviously the contribution from virgin source neutrons.

As a variation on this theme, we can repeat this calculation using the

separation of variables approach by seeking a separable solution of the

form

N(v,l)~¢i(v)e"‘
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If we substitute this into Eq. 5.5. we find a condition on 111((0) and A

[1+ vE.(v)]¢.(v)=t12.(v)vM(v> f0 dv'v'2.(v'>¢.(v') (5.9)

which we recognize as an eigenvalue problem for the eigenvalue A and the

corresponding eigenfunction 112,((0). It is convenient to normalize the 114(0)

such that

Lwdv 62,(6)0,(6)=1 (5.10)

Then, in analogy to the application of singular eigenfunction methods to

the one-speed transport equation in Chapter 2, we expect Eq. 5.9 to have a

continuous spectrum of eigenvalues for those values of A such that A+

02,(0) can vanish: A= — 02,(0), 0E[0,oo). Hence for A6£(—oo, —A*], we

can divide through to find

_ l32.(v)vM(v)

‘M(v) _ A + 02(0)

and apply the normalization condition Eq. 5.10 to find that the discrete

eigenvalues are given by the condition

_ w [02,(0)]2M(0) _

But we know that this equation has one solution, A= —A0; that is, Eq. 5.9

_ has one discrete eigenvalue, —A0.

The values A €(— 00, —A*] form the continuous eigenvalue spectrum and

have corresponding continuous eigenfunctions

BE.(1>)vM(v)

¢}‘(v) = P A+ 02,(0)

+g(A)8[A+ 02,(0)]

where the normalization yields

4 [vZ.(v)]’M(v)

g(A)= 1 -prf0 00W

We can prove the usual orthogonality and completeness properties (see

Koppel’s workl5 for details). An expansion of the general solution to the

initial value problem in terms of these eigenfunctions and a subsequent
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evaluation of the expansion coefficients by applying the initial condition

and orthogonality will yield a final solution identical to that obtained by

Laplace transform methods. These eigenfunctions in the speed variable are

used only to expand functions of 0 defined for the full range of vE[0, 00).

That is, we never need to consider the difficulties that arise in half-range

expansions in this problem.

Before leaving this simple example, it is useful to note several features

that reappear in more general problems: (i) the branch cut of the integral

transform approach is identical to the continuous eigenvalue spectrum that

occurs in the separation of variables approach, (ii) this continuous

spectrum ranges from —A* to — co, and (iii) the discrete eigenvalues are

real.

Let us now return to the more general problem represented by Eq. 5.4.

In operator notation this can be written as

8N

w -AN (5.11)

where we have defined the collision operator

DO

A 9 E — vZ,(o) +f dv’v'Zs(v'——>o) °

0

Suppose we apply a Laplace transform to Eq. 5.11—at least in a formal

sense—to write

s1\7(n,s) — N0(v) =Al\l(v,s)

We can then formally solve for the transformed density N(v,s) as

N(v,s)= [s—A]_lN0(v)

where [s—Al‘l represents the inverse of the operator [s—A]. Hence we

are faced with inverting

l a i _

N(v,t)=—,f * “asap-A] 'rv,,(n)

27” o—ieo

To facilitate this inversion, we must study the analytic behavior of

[s— A]— lN0(v) as a function of the complex variable s.

But how do we study the analytic behavior of an operator expression

such as this? Suppose that ho was an eigenvalue of A. Then in some sense

(soon to be clarified)

[s—A]“Nn(v)~(s—>\6)"'1\ln(v)
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292 [1 BASIC PROBLEMS IN TRANSPORT THEORY

Hence the singularities of [s—A]_'N0(v) are just the eigenvalues of the

operator A. That is, in the more general problem in which the scattering

kernel is not in the simple form of a degenerate kernel, we must study the

eigenvalue problem

All/x = All’).

before we can invert the transform.

Of course a more direct approach would be to use separation of

variables by trying a solution

N(vJ)~\l/x(v)e”

to find the eigenvalue problem directly as

A111)‘ = [ — vZ,(v) + foodv'v'Zs(v'->v) ° :|\l/)\(U) =AIIJ)\(D) (5.12)

0

Unfortunately, we cannot merely follow the singular eigenfunction ap-

proach to analyze this more general problem as we could for the synthetic

kernel model Eq. 5.5. We must develop a more general mathematical

approach.

Let us remind ourselves of the general procedure we have employed in

our earlier applications of the separation of variables method:

i We obtained an eigenvalue problem by substituting the separable

form of the solution into the homogeneous equation.

ii We studied this eigenvalue problem to determine its eigenvalues and

eigenfunctions.

iii We sought the general solution to our initial value problem as a

linear combination of these eigenfunctions

N(v, t) = ; "Ml/Awe)"

and applied initial conditions (along with orthogonality) to evaluate

the expansion coefficients a,,.

Therefore it is apparent that the eigenvalue problem plays the key role in

the mathematical solution of the problem (whether we approach it by

integral transforms or by separation of variables). But in asymptotic

relaxation processes, the eigenvalue problem also plays a key role in the

physical interpretation. The eigenvalue problem tells us what kind of decay

modes (eigenfunctions) exist. If there exists an eigenvalue with least real
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part A0, its corresponding mode will dominate for long time: N(v,t)~

aotlto(v)e_"°'. Hence any experiment measuring the asymptotic behavior of

the neutron distribution will measure this least damped eigenvalue.

Therefore just by studying the eigenvalue problem, we can frequently

determine all we need to know about asymptotic relaxation experiments. It

is not necessary to construct the full solution to the initial value problem.

That is, the asymptotic behavior of the neutron distribution is determined

by the least damped eigenvalue of the appropriate form of the transport

operator A. This is a common feature of all such asymptotic relaxation

problems (such as those arising in pulsed neutron, diffusion length, and

neutron wave experiments), and it explains their rather intimate connec-

tion with the spectral theory of the transport operator.

Therefore we now turn our attention to a study of the eigenvalue

problem Eq. 5.12. Unfortunately, A is a rather complicated operator—

much more complicated, in fact, than the standard operators one encoun-

ters in mathematical physics. It is (i) not self-adjoint, (ii) not completely

continuous or compact, and (iii) unbounded. This means that our eigen-

value problem is of an extremely general type. Therefore we require rather

genegapl mathematical concepts from functional analysis to deal with Eq.

5.12. 23

Appendix E introduces very briefly several of the concepts from func-

tional analysis that are necessary to study eigenvalue problems associated

with transport theory. Fortunately most of the items we require are merely

definitions, since mathematicians have already done most of the work for

us by proving the relevant theorems. Our principal remaining task, then, is

to determine just which of these theorems can be applied to study our

eigenvalue problem.

We can separate this analysis into three steps (which correspond essen-

tially to the steps outlined previously):

i Classification of the spectrum o(A) of the operator A (i.e., determine

the “eigenvalues” of A).

ii Spectral representation of functions (i.e., determine the corresponding

eigenfunctions and demonstrate orthogonality and completeness

properties).

iii Use of this spectral representation to solve the original initial value

problem.

In most cases, the analyses presented in the literature complete only the

first step, the classification of the spectrum, since this is frequently all that

is needed to analyze asymptotic relaxation experiments. Furthermore, in

only a few simple cases is it possible to carry through the second and third

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y
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steps to complete the solution of the original problem—at least on any but

a formal basis.

To demonstrate how to apply the spectral theory of operators to trans-

port problems, we analyze in some detail the initial value problem repre-

sented by Eq. 5.4. Later, when we discuss more complicated problems

(involving space and angle dependence), we skip the details of classifying

the spectrum because they are rather clumsy but straightforward exten-

sions of the steps involved in studying Eq. 5.4.

Before we proceed it is convenient to “symmetrize” the problem by

making a change of dependent variable

‘I’1(v)= [M(v)] _'/2¢1(v)

so that we can rewrite the eigenvalue problem Eq. 5.12 as

-6>:,(6)\rr,(e)+ f °°de’1<(6',6)~11,(6')E(A,+A,)\rr,=x\rl, (5.13)

0

where K(o’,o)E [M(o')/M(v)]l/zo’2,(o’—>o). By using detailed balance,

o’M(o’)E,(o'—>o)=vM(o)2,(o—>o’), we can verify that K(o',o) is a sym-

metric kernel. This is useful because it will imply that the integral operator

A2 is self-adjoint. We can now proceed to study the eigenvalue problem,

Eq. 5.13.

Step 1. Classification of the Spectrum 0(A). We have already mentioned

that A2 is self-adjoint in the sense that (A2f,g)=(f,A2g). Furthermore we

note that an integral operator such as A2 is completely continuous if its

kernel K(o',o) or any Neumann iterate of this kernel is square integrable,

for example,

foodofwdo’|Kn(o’,o)|2<oo

0 0

(Such square-integrable, symmetric kernels are called Hilbert-Schmidt

kernels,“ and they have been extensively studied by mathematicians.)

Hence to determine whether A2 is a completely continuous integral

operator, we must study the square integrability of its kernel K(o’,o) for

various materials—that is, various types of cross section Es(o’—>o). This is

a rather involved procedure, and we state only the results of this investiga-

tion for various materials.

i-Monatomic gases. Detailed calculations by Dorfman25 have demon-

strated that although K(o',o) is not itself square integrable, its third iterate
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is square integrable. This is sufficient to imply that A2 is completely

continuous for gases.

ii Solids in the incoherent approximation. Kuscer and Corngold26 have

shown that K(v’,v) is well behaved for low and intermediate (v',v). Since

K(v’,v) must reduce to the monatomic gas kernel at high (0’,v), they

conclude that A2 is also completely continuous for incoherent scattering

from solids.

iii Liquids. For liquids, Kuscer and Corngold have shown that K(v’,v)

also possesses a divergence for low (0’, 0). However they conjecture that an

iterate of K(v’,v) is square integrable, hence permitting them to conclude

that A2 is completely continuous for this case as well.

iv Coherent, elastic scattering from solids. We have seen that the cross

sections for polycrystalline materials contain 8-functions in both energy

and angle. Hence we must conclude that A2 is not completely continuous

in this case.

Therefore for all materials in which coherent scattering is insignificant, we

can conclude that A2 is a self-adjoint, completely continuous integral

operator. Furthermore, since the contributions to Al and A2 due to elastic

scattering cancel in the infinite medium problem, we can disregard case iv

without loss of generality (although for problems in which the spatial

dependence must be included, case iv will pose a special problem).

Next we examine Al= —02,(v). It is evidently self-adjoint (since it is

real). But since 2,(v) ~ constant for large 0, Al is an unbounded operator

and certainly not completely continuous. It is a closed operator, however

(since a multiplicative operator cannot destroy the convergence of a

sequence). Hence we conclude that Al is a self-adjoint, closed operator.

We now have enough information about Al and A2 to classify the

spectrum of A. We approach this classification in the usual fashion by

stating the results as a theorem (see Appendix E for the relevant definitions

and details).

Theorem. The operator A =Al +A2 decomposes the spectral }\-plane as

follows:

oc(A) = C, where C E {A : }\= — vZ,(v),v E[0, 00)}.

0,,(A): A real set contained in the interval (— oo, —}\"].

o,(A): An empty set.

p(A): All other points in the A-plane not contained in 0(A) (see Figure

5.3).

Proof We first show that C Coc(Al) by using the Weyl criterion (see

Appendix E). Choose values of AG C and 0)‘ such that >\= — 0,210,). Now
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71—Plane

0c ; c'p C

—)\‘ —)\j

Fig. 5.3 II] Spectrum of the infinite medium transport operator.

construct a set of functions (p,s that approximate 8(v — v,()

1/2

(paw): , 0, <0 <v,\+8

0, otherwise

Clearly

0+8 MU 1/2

11611410‘ 110%] =c>°

whereas (pa—>0 [since (f,<p8)—>0 for any f 5132]. Furthermore, "(24, —}\)<p8||

->0. Hence by the Weyl criterion, AG oc(A,)=C Coc(A ,).

Next we have to prove that all the continuous spectrum is contained in

C. To do this, we consider some 210 not in C, that is, some hose — vZ,(v) for

any v E[O, 00). Then

(1‘11->\6)_'=[-vE.(v)">\0]_l

is certainly a bounded operator. Hence by the definition of the continuous

spectrum, these A0 cannot be in oC(A l), and AOQEaC(A,)=>C C0,(A,)=>C=

00(A ,). Now since A, is a closed operator, and A2 is a completely continu-

ous self-adjoint operator, we can apply the Weyl—von Neumann theorem

to show that

ac(A) = oc(A1+A2)= 07:(A1)= C
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Since A =Al +A2 is the sum of two self-adjoint operators, hence is itself

self-adjoint, it can have no residual spectrum 0,(A).

Finally we consider the point spectrum 0,,(A). Using detailed balance,

we can demonstrate (just as in the synthetic kernel model) that for l / 0

absorption, 2,,(v)=23 / 0, the smallest eigenvalue is A0= —22. But how do

we study the remainder of the point spectrum? This is rather difficult in

general, but the idea is to use the fact that A62 C to rewrite the eigenvalue

problem (5.13) as

<1>,(v)= Lwd0’k,‘(0’,0)11>,\(0’) (5.14)

where

K(0’,0)

[02,(0) +A] l/2|:0'2,(v') +A] v2

k((0',0)=

We now introduce an “artificial” eigenvalue c into this equation

co,(v)= fwdv'k,(v',v)<1>,(6') (5.15)

0

Since k,\(0’,0) is a symmetric, square-integrable kernel (of the Hilbert-

Schmidt type), we can frequently determine the eigenvalues c of Eq. 5.15.

Then we must plot these eigenvalues c(A) as a function of the parameter A

and pick off the points where c(A)= l to determine the point eigenvalues of

Eq. 5.13 (see Figure 5.4). For incoherent solids, this procedure indicates a

finite set of point eigenvalues in 0,,(A). For gases we find an infinite set of

eigenvalues, with —A‘ appearing as a limit point of this set. The situation

for liquids is a combination of both these cases and not very well

understood.26

Step 2. Construction of the Spectral Representation. There is relatively

little information available concerning the spectral representation corre-

sponding to the spectrum 0(A). In analogy with our separable kernel

model, we might expect that the forms of the eigenfunctions are as follows:

0(11)=;i%')l+,—j. 464(4)

where (pl-(o) is defined to be the solution to the integral equation

00 .v'zxv'w) ,

n(v)-f. “0 mil”)
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W 7

clhl

c()\)

—1\' _x2 _x, ->.,, o

(b)

Fig. 5.4 [1 Location of the point eigenvalue spectrum for solids (a) and gases (b).

The singular eigenfunctions take a similar form

‘M(v)

¢>.(U)=PW

+g(A)8[vE,(v)+A], AEoC(A)

Since we do not have a more explicit form for the eigenfunctionsfit is

difficult to determine their orthogonality or completeness properties. At

this point we can only presume that the form of the solution to the initial
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value problem Eq. 5.4 will be

~(v.:>= 2 %<v>e"~'+fwdmomve-M

A‘

Ajean

in analogy to the form we calculated for the synthetic kernel model.

Asymptotic Transport Theory (e’B'r approximation) [1 We now turn our

attention to the more general problem of the decay of a neutron pulse in a

finite-sized sample of nonmultiplying material. We implement an ap-

proximation known as asymptotic transport the0ry27'28 by forcing the solu-

tion to have a harmonic spatial dependence. More specifically, we assume

that the neutron phase space density can be written as

n(r,v,t)~n,_.,(v,t)em'r

where |B| is a fixed, real number and is frequently identified with the

“geometric buckling” or characteristic wave number of the geometry,

B~(rr / characteristic dimension). One can provide a more “rigorous”

justification for this ansatz by assuming that we are interested in studying

only the time decay of the fundamental spatial mode, or that we have just

taken a Fourier transform in space and are going to invert this transform

eventually (although of course one never completes the last step in prac-

tice). Presumably asymptotic transport theory will give an idea about what

is going on for long times in systems of dimensions much greater than a

mean free path.

Substituting this ansatz into the transport equation, we find that our

initial value problem simplifies to

an

a—tB + iB'vnB + vE,(v)nB(v, t) = ~fdsv’v’Es(v'—>v)n,,(v’, t)

i.c.: nB(v, 0) = n0(v)

(Of course we no longer have any boundary conditions to worry about.)

Once again we can apply our spectral theory approach by using separation

of variables

"B(V’t)=\l/x(v)eN

to arrive at an eigenvalue problem of the form

(A. +A.>¢.E — Uzm— iBlw‘l“ fdsv'v'wav O 4a(v)=l\\l/i

(5.16)
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where 11=v-B/|v| Notice that this is almost the same as the time

relaxation problem in an infinite medium, except we now have an addi-

tional iBpv term in the multiplicative operator Al as well as an angle

dependence. We can apply essentially the same scheme to classify the

eigenvalue spectrum of A. We avoid details and state only results.

Since Al is closed and A2 is self-adjoint and completely continuous (at

least for noncrystalline media), we find that by the Weyl—von Neumann

theorem

06(14): °¢(A1 '1' A2) = 06(141)

But if we assume that there are no point eigenvalues embedded in C, we

find that the continuous spectrum fills a bullet-shaped region in the left

half-plane (see Figure 5.5):

o,(Al)=C, C—_"={}\:l\=—vZ,(v)—iBuv, vE[O,oo),p.E[—l,+l]}

Since Al is a non-self-adjoint operator (because of the iBuv term), we have

a complex continuous spectrum C—in fact, we have a two-dimensional set

or area spectrum in the A-plane. We can again show that the residual

spectrum o,(A) is empty by demonstrating that if }\*Eop(Al) then AG

0,,(A).

To identify the location of the point spectrum op(A), we consider the

special case of isotropic scattering. Then we can restrict AGE C, divide

A—Plane

I I\ n. A

% -x* -7\l

Fig. 5.5 1:1 Spectrum of the transport operator under the assumption of asymp-

totic transport theory.
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through in Eq. 5.16 by >\+ iBp.0+ 01(0), and integrate over 11 to find

1

h+iB0+02 (0)

@1\(0)=T0 n —__'—

>1 —- iBo + 02(0)

U0°°de'2,(e'_>e)<1>,(e') (5.17)

where <1>,\(0)= f fldp 11¢,(V). This equation can be used to demonstrate that

the point eigenvalues are real. It can also be used to demonstrate the

following very interesting property (first noted by Corngold).27

Theorem. (“Maximum B Theorem”). For B sufficiently large, there are no

point eigenvalues to the right of —A*.

Proof. Suppose we write Eq. 5.17 as follows:

q)x(0)=8(>\1310)142¢‘x(0)1 he C

The application of the Schwartz inequality to this equation yields

||‘P1||=I|8142‘1>x||< llgAzllll‘I’xll

Hence for Eq. 5.17 to have nontrivial solutions (1),‘, we demand

||gA2]| >1 for some 21$ C

But as B becomes very large,

1

2iB0 1n

) as B—>oo

1eel—-

g()\’B’o)= A—iBo+oE,(0)

A+ iB0 + 02,(o) ] 0(

Therefore we can show that

1' A =0

851; Mg ell

In particular, for some B“ < 00, B >B* will imply that H gA2|| < 1, hence

that Eq. 5.17 has no nontrivial solutions for any >165 C——that is, there are

no point eigenvalues for B >B*.

Notice that this theorem has a very interesting physical implication. We

expect the general solution to the initial value problem to take the form

n(r,v,t): 2 aA¢>\(v)eiB-r+)\t+f d2AA(}\)¢A(v)e|B-r+ht

A60, C

For B <B*, the least damped point eigenvalue —)\0 will dominate the long
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302 U BASIC PROBLEMS IN TRANSPORT THEORY

time behavior as

n(r,v, t)~a0¢0(v)e"”"')‘°‘ as t—>oo

But notice that for the case B >B‘, we have no point eigenvalues;

therefore our solution takes the form

n(r,v,t)= f almost/gnaw”

c

which is not an exponential in time (at least manifestly). Hence this

theorem suggests that for sufficiently large B, that is, sufficiently small

systems, one can no longer observe an asymptotically dominant exponen-

tial decay in time. (In this regard, recall our analysis of the analogous

one-speed problem in Section 2.5).

The nature of this problem changes somewhat for polycrystalline materi-

als such as graphite or beryllium, since the scattering operator due to

coherent elastic scattering (Bragg scattering) is not completely continuous

and gives rise to an additional continuous spectrum.28 Furthermore, the

irregular, essentially discontinuous behavior of the total cross section for

these materials fragments the continuous spectrum oc(A). However the

principal conclusions of our earlier analysis (in particular, the maximum B

theorem) remain valid.

The Initial Value Problem in Bounded Geometries29'32 El Let us now

return (finally) to consider the most general form of the initial value

problem

8_n

at + v-Vn + vE,(v)n(r, v, t) = Idsv' 0’Es(v’—>v)n(r,v’, t)

i.c.: n(r, v, 0) = n0(r, v)

b.c.: n(R,,v,t)=0, é;v<0

We again use separation of variables

n(r, v, t) = ¢>\(r, v)eN

to arrive at the appropriate eigenvalue problem

l\¢>\(r,v)= — v-V— 02,(v) — fd3v’v’Es(v’—>v) o il/,\(|',v)=At]/A

\—__V—J

\L—v—J

AI A2

Notice that since we have a spatial derivative in the operator, we must also
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include the boundary conditions in the specification of the eigenvalue

problem: 111,‘(R,,v)=0,é,-v<0. As before, we must first classify the

spectrum 0(A). The situation is now much more difficult because of the

v-V term. Again the idea is to pick a sequence of test functions (which now

must also satisfy the boundary conditions). However in this case, we can

only construct a sequence {0),} such that

11.1 >1>0

11<4.-1>1>.11+0 Rem—4*

(we can no longer show weak convergence (pa—*0). Hence all we can say is

that the region to the left of —}\‘ is in the spectrum of A, we cannot

specify just whether it is in oc(A) or 0,,(A) (see Figure 5.6).

Unfortunately we can no longer apply the Weyl—von Neumann theorem,

since A, is not a closed operator (because of the derivative term). There is

an alternative approach to proving that all the continuous spectrum must

be to the left of —)\* however. First we restrict Re[>\} > —)\“. Then we can

integrate the integrodifferential form of the transport equation over space

to find the integral equation (the “generalized Peierls equation”):

\I',,(r,v)=j(;ndrexp{ —[vE,(v)+}\]1-}fdsv'v'E:(v'—->v)\I/,(r—v'r,v’)

EFA‘I’x

‘7 = "cu"? )t—Plane

Fig. 5.6 [I Spectrum of the transport operator in bounded geometry.
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304 1:1 BASIC PROBLEMS IN TRANSPORT THEORY

where T-V'l’l is on the surface of the sample. We now apply a very useful

theorem from functional analysis.

Theorem. (T amarkin and Shmul’yan).33 If F,‘ is defined in a given region

D(A) of the A-plane as a compact operator analytically dependent on A,

any given number c (in our case, c= l) is (i) an eigenvalue of F,‘ for all

AE D(A) or (ii) belongs to the resolvent set—except for isolated values for

which c is an eigenvalue.

To apply this theorem, one notes that by construction F, is analytic in A.

Hence all we have to prove is that FA is compact. This is rather messy, but

it can be done. Then applying the Tamarkin—Shmul’yan theorem (noting

that case ii applies), we find that only point eigenvalues can lie to the right

of —A‘. Here we have again used the fact that there is no residual

spectrum.

It is also possible to prove that for small R, where R is some characteris-

tic dimension of the sample (an average chord length),

1' F =0

R13," .11

which implies that for sufficiently small systems, there are no discrete

eigenvalues to the right of —A".

And as in the two simpler problems we considered earlier, there is still

very little known about the spectral representation of the solution to the

initial value problem using this spectral classification.

Spatial Relaxation Phenomena in Neutron Ther'malization34'35 El Let us

now turn our attention to the analogous problem involving the spatial

decay or relaxation of the neutron distribution away from a localized

source. That is, we will study the asymptotic spatial decay of the phase

space density at large distances from the source (just as in the time

relaxation problem, we studied the asymptotic time decay for long times

after the source burst).

To be more precise, consider the time-independent transport equation

v-Vn + 02,(0)n(r,v) = fd30’ o’2,(v'—>v)n(r,v’) + s(r,v) (5.18)

Since we are only interested in the asymptotic form of the solution to this

equation, we leave the boundary conditions unspecified.

We can again approach this problem using either integral transforms or

separation of variables. Since we have found that both approaches eventu-

ally lead to the same eigenvalue problem, we consider only the more direct

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



ASYMPTOTIC RELAXATION PROBLEMS 1:1 305

separation of variables approach by choosing a separable ansatz

"(r,v)=<i>..(v)e""

where our coordinate system will be chosen such that the wave vector is

along the z-axis. Then if we substitute this form into the transport equation

(5.18), we arrive at an eigenvalue problem

[02,(0) — rqrv] <pK(v) = fd3v’ v’Zs(v’->v)<px(v’) (5.19)

for the eigenvalue 1: and the corresponding eigenfunction (px(v). Again we

can follow the general approach by (i) classifying the spectrum of Eq. 5.19,

(ii) constructing the corresponding spectral representation, and (iii) using

this spectral representation to solve the given boundary value problem, say

in the form

n(r,v)= 2 490.0)?"

KEG

Once again we note that if there exists a least damped eigenvalue 1:0, then

far from sources and boundaries we find the asymptotic form

r'(r.v)~anqvn(v)e_““"

Hence just as we interpreted the pulsed neutron experiment as the

measurement of the least damped time eigenvalue of the transport opera-

tor, we can interpret the analogous spatial experiment, the neutron diffu-

sion length experiment, as just the measurement of the least damped spatial

eigenvalue.

We can adapt much of the earlier analysis of the time eigenvalue

problem. Again we skip the proofs and merely note results. For the case of

incoherent scattering (noncrystalline media) the integral operator in Eq.

5.19 is completely continuous; hence our continuous spectrum 0,(A) is

given by the set of all x for which [v2,(v)— 1:110] vanishes; that is,

,.m,

# vE[0,oo), ne[—1,+l]

Hence the continuous spectrum falls on the real axis from — co to —EM

and from +2,W to +00, where we define EMErninE,(v). It should be

noted here that EM is the analogue to 21* in the time-dependent problem.

However, whereas )1‘ occurred as v—>0, EM usually occurs as v—wo (see

Figure 5.7).
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K—Plane

0,, 0C

mae-ae-ae—fi—Q—aegfi.

—\_ 1,,

Fig. 5.7 1:1 Spatial eigenvalue spectrum of the transport operator.

Since the operators in Eq. 5.19 are self-adjoint, the spectrum must be

real. We can prove that the point spectrum must lie in the range

[— 2M, 2”]. If we further assume that scattering is isotropic, we can rewrite

Eq. 5.19 for the point spectrum as

<1>,(v)= ZLlnl 2(0)“

K1)

Z,(v)—x

f wdv’v’Z,(v’->v)<I>K(v’)EGK¢>K

0

where <I>K(v)= f fldnqaxh). Once again one can force the point spectrum to

disappear, this time by adding absorption to the medium. That is, if we

assume that we have 1 / v absorption, 20=22/ v, it can be shown that

||GK||—>0 as EDS—>00. Thus we can prove another theorem.

Theorem. (“Maximum Absorption Theorem”).27 For sufficiently large ab-

sorption, there are no spatial eigenvalues.

If we suppose the spectral representation to take the form

n<r.v)= 2 a.<p.(v>e""+[ d~A<~)¢.(v)e-"

KEG’, or

then for 22 <2? we find the desired exponential behavior

n (r, v) ~ a°q>0(v) e _ "°", |r| —> oo
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while for 22 > 22'

n(r,v)~f dKA(x)q>K(v)e_"", M366

r

Since we define the neutron diffusion length L = no" ', we can conclude that

for 22 >22’ there is no diffusion length (at least in the traditional sense).

A very closely related problem is the neutron wave experiment?‘6 which

involves the asymptotic response of the neutron distribution to a time-

modulated source (more precisely, a time-modulated component of the

source, since a negative source function would not be defined). This can be

described by the transport equation

% + v-Vn + 02m = ~[d3v’v’ES(v’—>v)n(r,v',t) + sw(r,v)e"“"

where w is real and fixed. Of course for w=0, we have the static source

typical of the diffusion length experiment, and in this sense, the diffusion

length problem is only a special case of the more general neutron wave

problem in which w>0.

We assume that all time transients have decayed away so that the time

behavior of the neutron distribution is identical to that of the source.

Hence our ansatz is taken as

n(r, v, t) = <p,,(v) exp — (re-r + iwt)

and on substitution into the transport equation, this leads to the eigenvalue

problem for 1:

[ice — up!) + 02,(0)1q>,,(V)=fd30' D'Zs(v'—*V)IP~(VI)

Notice that the iw has now made the problem non-self-adjoint. Hence we

expect to find complex eigenvalues. The continuous spectrum for this

problem is an area in the complex x-plane (see Figure 5.8). Furthermore,

the point spectrum is also complex (with symmetry between the first and

third quadrants corresponding to wave propagation either to the left or to

the right). As (ii—>0, the area continuous spectra collapse to the cuts along

the real axis characteristic of the diffusion length experiment.

Once again we encounter situations in which the point spectrum may

vanish.36
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K—Plane

_ZM *

Fig. 5.8 E] Spatial eigenvalue spectrum of the transport operator subjected to an

oscillating source, exp(iw t).

Theorem. (“Maximum Frequency Theorem”) For sufficiently large (.0 or

2,, there are no point eigenvalues outside C.

(However now, in contrast to the diffusion length problem, we cannot rule

out the possibility of point eigenvalues embedded in the continuous

spectrum.)

Further Comments on Asymptotic Relaxation Problems 1] We have

analyzed three different types of experimental procedure for studying the

asymptotic behavior of the neutron distribution in a material: pulsed

neutron experiments (PNE), diffusion length experiments (DLE), and

neutron wave experiments (NWE). All three experiments are similar in that

they seek to measure a fundamental discrete eigenvalue as a function of

some experimental parameter: In the NWE, one measures the complex

wave number 1: versus the source frequency w; in the PNE, the time decay

constant A is measured as a function of system size (or B); and in the

DLE, the inverse relaxation length 1: is measured as a function of absorp-

tion concentration.

All three experiments exhibit limiting values of parameters for which a

true exponential asymptotic relaxation of the distribution will be present.

For example, if system sizes become too small in the PNE, or absorption

becomes too large in the DLE, or if source frequency becomes too large in

the NWE, the point spectrum will no longer dominate the asymptotic

behavior of the neutron distribution. It should be noted that these limiting

conditions are actually of the same order of magnitude in all three classes

of experiments.
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ltd

s—Plane

Discrete

eigenvalues

exist’

—iw

Fig. 5.9 [1 Region in which roots to the dispersion law A(k,s) exist.

From a somewhat different perspective, one can interpret the conditions

that determine the point spectrum for each experiment as being a specific

representation of a general dispersion law that relates independent and

dependent experimental variables. That is, if we recognize that the parame-

ters A and B in the PNE are related to K and 2,, in the DLE and to K and w

in the NWE, we can define the point eigenvalues by a condition of the

form

A(rc,s) =0

which relates the two complex variables K and s. In the s-plane, there will

be a region of parameters s for which A(rc,s) may have zeros Kj (i.e., for

which discrete spatial eigenvalues xj exist). For s outside this region, no

such discrete eigenvalues exist. The maximum frequency (buckling or

absorption) theorems occur when the bounding curve R dividing these

regions intersects the axes (see Figure 5.9). It is evident that the limiting

values of various parameters for each type of experiment can be compared

by examining the shape of the curve R. Simple modeled calculations37'38

based on separable scattering kernels suggest that R is roughly circular,

thus implying that all three experiments are equally restricted by their

respective limitations on independent experimental parameters.

The Criticality Eigenvalue Problem El Perhaps the most important eigen-

value problem in nuclear reactor applications arises in the determination
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310 [:1 BASIC PROBLEMS IN TRANSPORT THEORY

of the composition and geometry of a system containing fissile material

that will sustain a steady-state or critical nuclear fission chain reaction.

Since such a process can be identified with a time-independent neutron

distribution, we find that one formulation of the criticality problem in-

volves the determination of system parameters that would yield a zero

fundamental time eigenvalue (corresponding to an everywhere positive

eigenfunction)

(M— F)¢0= [v-V+ 02, — fd3v’v’Z,(v'—>v) <1 —x(v)fd3v'vv'zj° ]\I/o

=A¢0=0 (5.20)

where we have included the fission operator F in addition to the transport

operator, which we have relabeled as M.

However this is an extremely awkward formulation to analyze in prac-

tice because it involves determining the time eigenvalues and adjusting

reactor parameters until the smallest of these eigenvalues ho is made to

vanish. A more convenient approach involves the insertion of a fictitious

eigenvalue k“1 in front of the fission term so that Eq. 5.20 can be written

as

M11= F11 (5.21)

Pr-|>--

One then studies this “criticality eigenvalue problem” for the eigenvalue

k‘1 and adjusts system composition and geometry until the largest k (the

smallest eigenvalue k“) corresponding to an everywhere positive eigen-

function is unity, k0= 1. This particular formulation presents a number of

advantages. For example, the criticality eigenvalue k0 can be shown to be

identical to the multiplication factor k, defined as the ratio of the number of

neutrons in two successive fission generations. Furthermore, the criticality

eigenvalue problem in this form is ideally suited to numerical solution by

means of the familiar power iteration (to be more precise, the “inverse”

power method)9 in which one writes Eq. 5.21 as

l _

\V—‘ZM ‘F11’

and then iterates as

‘Pn+l=klM—1F¢n

II
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where

n n+1

kHEwM

(Ft/"111")

to obtain the eigenvalue k"—>ko= kc“ and the corresponding eigenfunction.

On a more theoretical level, there is a paucity of information available

concerning the eigenvalue spectrum of the generalized eigenvalue problem

represented by Eq. 5.21. Although physical considerations lead us to

suspect that there will always exist a unique nonnegative solution to Eq.

5.21 with a corresponding positive eigenvalue ko that is larger in modulus

than all other eigenvalues, this feature has not been proved in general

(although restricted proofs have been provided for the one-speed and

multigroup forms of Eq. 5.21, subject to rather stringent continuity

assumptions).39"° Very little information is available concerning the higher

eigenvalues or the remainder of the eigenvalue spectrum. The importance

of the theory of the criticality eigenvalue problem to nuclear reactor

applications has stimulated continuing activity on this subject, however,

with particular emphasis devoted to providing a more solid foundation for

numerical solution methods.

5.1.2 [1 Linearized Gas Dynamics"“3 [1 We have noted the very close

similarity between the mathematical description of neutron transport and

the time evolution of a weak disturbance in a rarefied gas. Indeed, within

the framework of kinetic theory, neutron transport is actually just the

foreign gas problem, whereas conventional gas dynamics involves a single

species gas. Both problems are described by the linear Boltzmann equation

(but with some significant differences in scattering kernels). ‘

To be more precise, recall (cf. Section 3.2) that if we linearize the

Boltzmann equation about an equilibrium distribution and assume finite

range (truncated) potentials, we arrive at the linearized Boltzmann equa-

tion, which can be written in the form“l

8

1;? +v-Vnl + 02nl = ~fd30'0’2LG(v'—>v)n,(r,v’,t) (5.22)

Here the scattering kernel 2w(v’—>v) characterizing the linearized gas can

be defined in terms of the microscopic interaction cross sections for atomic

collisions in gases, o(v’—>v), as follows:

2LG(v’—>v) = 20’2,(v'->v) — o’2k(v’->v)
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where

0'2 (v’—>v)=n d3u'uo(u’—>u)M v’—u’

s 0

0]2k(v'l—>v)= nOM(v)fd3u'ua(u'-—>u), u=v—vl

It is important to note here that in contrast to the neutron transport

scattering kernel, 2LG(v’—>v) can assume negative values. This feature has a

profound implication for the eigenvalue spectrum of the transport operator

characterizing a rarefied gas.

Infinite Medium Time Relaxation 1:1 In analogy with our study of neutron

transport, let us consider first the relaxation to equilibrium of a spatially

uniform gas of infinite extent, as described by

all + 62(6)]1/(6, t) = f °°d6' 0'2 (0’—>0)N(0’,t)

81 0

We can examine the eigenvalue problem generated by seeking separable

solutions of the form N(0,t)=¢(0)e’“ to find

[- 62(6) 0 + (“deems—>6) o ].p,(e)=>.¢,(n) (5.23)

As in the neutron transport case, we again find both continuous and point

spectra in general that depend on the assumed behavior of 02(0). But now

there are some interesting new wrinklesfm‘l’“ since the form of 02(0)

depends sensitively on the interaction potential. For power law potentials,

V(r)~r's, one finds that for “hard” potentials (i.e,s >4), 02(0) increases

monotonically; for Maxwell molecules (s = 4), 02(0) = r0 = constant;

whereas for “soft” potentials (s <4), 02(0) decreases (see Figure 5.10).“5

The location of the continuous spectrum is different for each of these

three cases, as shown in Figure 5.11. In particular, only the hard potentials

yield a continuous spectrum similar to the neutron transport problem. For

Maxwell molecules, the continuous spectrum degenerates to a point at

}\= — 110, but for soft potentials, the continuous spectrum actually comes

into the origin.

There are several important differences in the nature of the point

spectrum as well. For example, the origin ll=0 is now an eigenvalue of

twofold degeneracy corresponding to conservation of mass and energy. If

we had considered the more general problem in which we allowed the

eigenfunctions to be dependent on velocity v rather than speed 0, the

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



ASYMPTOTIC RELAXATION PROBLEMS 1:1 313

vZlv)

Maxwell 1: = 4)

'1)

Fig. 5.10 [1 Behavior of the collision frequency for various forms of the inter-

molecular potential in gases.

origin would have been an eigenvalue with fivefold degeneracy corre-

sponding to conservation of momentum as well. In the neutron transport

problem in the absence of absorption, there is only a simple eigenvalue at

the origin corresponding to conservation of number. This difference arises

because of the different mathematical structure of the scattering kernels. In

particular, we recall that 2,(v’—>v) is nonnegative for neutron transport,

whereas ELG(v’—>v) can assume negative values for the linearized gas

problem. Of course, from a physical viewpoint this difference occurs

because self-diffusion (e.g., neutron transport) processes only conserve

particle number (or mass), but collective transport processes conserve

particle mass, momentum, and energy in collisions.

In general there will also be a number of point eigenvalues in the

interval —l\"'<l\<0. For example, for both hard sphere and Maxwell

molecule potentials, there are an infinite number of eigenvalues in this

interval of the negative real axis that converge to a limit point at l\= —A".

Sound Wave Propagation E1 The spatial relaxation of a disturbance away

from a steady-state “source” (the analogue of the neutron diffusion length

problem) or the time relaxation of disturbances introduced into a finite

volume of gas in a container (the analogue to the pulsed neutron experi-

ment) are of only marginal interest in gas dynamics. Of far more interest

are studies of free and forced sound propagation,“ which examine the

properties of plane wave solutions to the transport equation of the form

n(r.v.v-¢<v)e"<“—~'>
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)t—Plane

)\-Plane

W )L

W 7‘

_,,o

(a) (b)

)t—Plane

IT! I] 1111111

‘11111 Illrrri

(c)

Fig. 5.11 [1 Continuous spectra of the infinite medium transport operators char-

acterizing a gas. (a) Hard. (b) Maxwell. (c) Soft.

so that Eq. 5.22 reduces to the form

[111 -v -1... + 62(6) ] .1. (v) = f dsv’ saw—“)6 (v’) (5.24)

If we imagine such disturbances as being introduced in the gas by a

localized source of fixed frequency 6:, we have just the forced sound wave

propagation problem (the analogue to the neutron wave experiment). If

instead we fix k and determine how the corresponding density disturbance

in the gas relaxes in time, we have the free sound wave propagation problem

(analogous to the pulsed neutron experiment as described by asymptotic
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transport theory). Notice that both problems are tractable because of the

absence of boundary conditions (i.e., corresponding to infinite medium

relaxation problems, in effect). Each problem is an eigenvalue problem in

either k or w.

1 Free sound wave propagation. 46'” Suppose we first fix k and regard

Eq. 5.24 as an eigenvalue problem for the time relaxation constants

characterizing disturbances of wave number k. The continuous spectrum is

determined by the condition

[ik-v — in) + 02(0)] = 0 for all values of v (5.25)

We align our 0, axis along k so that Eq. 5.25 becomes

w=kop.—i02(0), oE[0,oo), p.E[—l,+l]

Once again we find three cases, depending on the nature of the interatomic

potential (see Figure 5.12). The eigenvalues in the point spectrum corre-

sponding to the infinite medium relaxation problem (k=0) now move off

of the axis for k > 0 and into the complex plane. In particular, the fivefold

degenerate eigenvalue at w=0 separates into one purely imaginary mode

(nonpropagating) and two complex conjugate pairs of propagating modes

(again corresponding to the hydrodynamic modes of the gas, i.e., corre-

sponding to conservation of mass, momentum, and energy—see Figure

5.13).

ii Forced sound wave propagation. 47' ‘8 Let us now examine the alterna-

tive process in which we fix or to be real and determine the values of k for

which nontrivial solutions exist to Eq. 5.25. Again we find a continuous

spectrum that depends sensitively on the nature of the interaction potential

(see Figure 5.14). There are now four discrete eigenvalues, 1 k0 and i k],

which emerge from the origin as w is increased from zero (corresponding to

the hydrodynamic modes of the gas). The eigenvalues with smallest

imaginary parts correspond to sound waves (i.e., propagating modes),

while the second pair is characterized by much larger imaginary parts and

damps out rapidly in space (diffusive modes corresponding to thermal

conduction).

The similarities between these eigenvalue problems and those representa-

tive of neutron transport are quite striking, aside from the richer point

spectrum. Once again we find that for sufficiently large k or w, the point

spectrum disappears into the continuous spectrum, although it can be
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w—Plane

Trxw \ a; ‘‘‘‘ xx

\\

(a) (b)

w—Plane

(c)

Fig. 5.12 El Time eigenvalue spectra for free wave propagation problem in gases.

(a) Hard. (b) Maxwell. (c) Soft.

to—Plane

Fig. 5.13 l] Eigenvalue spectrum (in-

/‘ eluding hydrodynamic modes) for free

/ wave propagation in gases.

316 1:1
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k_plane \ k—Plane

)

k-Plane §

(c)

Fig. 5.14 El Spatial eigenvalue spectra for forced wave propagation in gases. (a)

Hard. (b) Maxwell. (c) Soft.

(a)

tracked down in modeled problems using analytic continuation proce-

dures46'48 (see Figure 5.15).

5.1.3 El Relaxation Processes in a Plasma El A wealth of relaxation

phenomena of various types arise in plasma physics. We discuss only one

of these, electron density oscillationsfw'50 (Actually, it was this particular

topic that led to the original development of the singular eigenfunction

methods by Van Kampen.5')

We simplify the analysis of electron density oscillations by assuming

that we have a uniform fixed background of positive ions to provide
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k—Plane

Fig. 5.15 1:1 Disappearance of point spectrum into continuous spectrum for

increasing frequency a).

macroscopic charge neutrality (at least in equilibrium). Furthermore, we

assume that there are no external magnetic fields, and we make the

electrostatic approximation that the electric field can be derived from a

scalar potential E= — Vq). Then to a certain level of approximation, the

equation describing the electron distribution function n(r, v, t) is just the

Vlasov equation

8n 8n e 8n

5*" a. ‘7.5” 8v =0

gr .1; = — 4116 f d 30[ n(r, v, t) -— n0(v)] (5-26)

Of course this is a highly nonlinear system, since the self-consistent field

term depends itself on the distribution n(r, v, t). Therefore we linearize Eq.

5.26 about an equilibrium distribution no(v)

n(r,v, t) = n0(v) + nl(r, v, t)

which we leave unspecified for the present (assuming only that it does not

depend on space or time). If we substitute this form into the Vlasov
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equation 5.26 and retain only first-order terms in the perturbation nl(r, v, t),

we arrive at the linearized Vlasov equation

an, 0nl e 8n0 _

a *v n " n 1 w -°

gr ~13, = —4'rrefd30n,(r,v,t)‘ (5.27)

To more easily visualize the relation between this transport equation and

the equations encountered in neutron transport or linearized gas dynamics,

consider an initial value problem in which all disturbances are char-

acterized by a specified wave vector k

n|(r,v,t)= nl(k,v,t)e“‘"

Then Eq. 5.27 can be written as follows:

8n0 _

8v

ELI-'- + ik-vn— 3E]-

at m

0, ik-El(k,t)= —4'rrefd30n|(k,v,t)

To simplify this equation, we define our velocity coordinate system along

the wave vector k such that we can integrate out the perpendicular velocity

variables to find

8"I - __ 2i dnO w I I

T +tkunl(k,u,t)—wp —E(E)f_wdu n|(k,u ,1)

where w§=(4'rre2n0/m) is the plasma frequency. Notice that this is begin-

ning to resemble our earlier linear transport equations (appropriately

Fourier transformed in space, of course).

The next step is to solve this equation subject to some initial value, say

n,(k, u, t)=n|(k, u,0). Landau50 first attacked this problem using Laplace

transforms in time. Van Kampen5| used the “normal mode” approach

(singular eigenfunction expansions), which was subsequently extended and

rigorized by Case. Since Landau’s approach is the clearest (and the more

common), we apply Laplace transforms:

w

ri|(k,u,s)'=—f dte_"nl(k,u,t)

0

to find the transformed Vlasov equation as

' dn 9°

s+'kuri k, ,s = 2i(——°) d" k, ’, + k,u,0

( wind, duf_wuni(us)"1( )
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320 El BASIC PROBLEMS IN TRANSPORT THEORY

We can solve this in the usual fashion to find

fwd n|(k,u,0)

u—.—

-00 s+zku : X(k,s)

_ 2]— w dno/du _ D(k,s)

l w” k.[_°°du s+iku

and also determine the electric field as

00

f duiil(k,u,s)=

—<fl

.. 41m eix(k,s)

El(k’s)= s)

To invert these transformed solutions, we first note that they contain

integrals that introduce branch cuts along the imaginary axis in the s-plane

(see Figure 5.16). Landau suggested that we analytically continue the

definitions of x(k,.s) and D(k,s) across the cut into the left half-plane. To

perform this analytic continuation, we notice that for the Cauchy integral

defined in the plane cut along the imaginary axis

1(z)=f_°°wdVi(”—) Re{z} >0

v+iz’

we can construct the analytic continuation into the left half-plane as

_ °° f (v) - -

IAc(z)—f_oodvv+iz +2mf(zz), Re{z}<0

(T 0 demonstrate that this is indeed the appropriate analytic continuation,

just take the limit as 2 approaches the imaginary axis using the Plemelj

formulas; then use the identity theorem for analytic functions.)

With this analytic continuation, we can deform the inversion path into

the left half-plane and pick up the residues from the poles of the trans-

forms. These pole singularities occur at the zeros of D(k,s), that is, at those

points s0 at which

_ 2

= _ 2, 00 dno/du_ fl @ _

DA¢(k’s°) l “’Pkf_,oduso+iku Zwkz du ism—0

When the unperturbed state of the plasma n0(v) is in thermal equilibrium,

we can calculate the form of the dominant poles s0= 1- iwo— 7 in the small
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I s—Plane ‘

s—Plane

l

I

.l

l

(a) (b) l

l 4:.

l t’\\

T l/_~\l

| Q‘;

l

l

(c)

Fig. 5.16 1] Analytic continuation and path deformation for the Landau solution

of the Vlasov equation. (a) Original s-plane structure. (b) Analytical continuation.

(c) Path deformation.

k limit as

3k T

w§~w3+(—B )k2

=_ 1'” -1/2 -1 _._l__

y wp(8) e (kAD) exp[ 200‘02]

where AD = k, T/ne2 is the Debye length. Hence the analytic continuation
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322 [1 BASIC PROBLEMS IN TRANSPORT THEORY

into the left half-plane yields a term with damping

l —o+ioo ~

= . we! _ :1

El(k,t) 12 Re + 27",] rise El(k,s)

—o——ioO

and therefore the large time behavior is of the form

E|(k, t)~ROe_7' cos(w0t + a)

This damping is referred to as Landau damping or phase mixing, and it

plays a very important role in plasma physics.“9

One can continue in this fashion to analyze an enormous variety of

other linearized relaxation problems in plasmas. For example, if we apply a

static magnetic field, many new complex relaxation phenomena appear.

However since these studies would take us too far afield into the discipline

plasma physics, and since we have already demonstrated the close similar-

ity between asymptotic solutions of the Vlasov equation and those encoun-

tered in neutron transport or gas dynamics, we proceed with the more

difficult subject of boundary value problems in transport theory.

5.2 [I GENERAL STUDIES OF BOUNDARY VALUE PROBLEMS I]

We have confined our attention thus far in this chapter to asymptotic

relaxation problems in transport theory that involve the behavior of the

particle distribution at long times or large distances from sources and

boundaries. This permitted us to analyze these processes simply by study-

ing the asymptotic form of the particle phase space density n(r, v, t), which

was governed by the least damped eigenvalue of the transport operator.

Hence all we really had to do was classify and determine the eigenvalue

spectrum.

In turning to problems in which we are interested in the particle

distribution in the neighborhood of sources and boundaries, we find that

we must actually construct the solution to a specific boundary value

problem. Of course this is extremely difficult, particularly when one

attempts to account for a general scattering kernel 23(v'—>v). If we recall

our rather formal analysis of asymptotic relaxation phenomena for this

general case, we should not be surprised that direct analytical attempts to

confront boundary value problems in which the particle energy depen-

dence is important have experienced only limited success. Indeed, since

such problems can be solved quickly and accurately using the sophisticated

numerical methods described in Chapter 8, it is not surprising that the

development of analytical methods appropriate for solving energy-depen-
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dent boundary value problems is a field that is largely ignored in transport

theory.

Nevertheless, for completeness we briefly review the attempts that have

been made to analyze this class of problem, if only to point out where the

principal difficulties arise. We restrict our discussion to time-independent

phenomena and usually assume one-dimensional (plane) symmetry. We

recall from Chapter 2 that the two most popular approaches to boundary

value problems in transport theory are integral transforms and singular

eigenfunction expansions. It is not surprising, therefore, that there have

been a number of attempts to extend these methods to transport problems

in which the particle energy dependence is included. However these efforts

have met with very limited success, and they have proved to be capable of

yielding explicit solutions only when they employ models of the scattering

kernel that reduce the transport equation to a form very similar to that

characteristic of one-speed problems.

5.2.1 El Synthetic Kernel Models [1 One of the most popular ap-

proaches in neutron transport theory has been to implement the very

simple synthetic or separable kernel modelM

Z,(v’—>v,p'—>p.)=(g)Es(0’)vM(o)Zs(v), B"Ej(;oodvvzs(v)M(v)

to arrive at the transport equation

2

+1 00

no ax +vE,(v)n= g0M(0)§I,(o)f_l dill‘; dv'v’E,(v’)n(x,0',p.’)

+ s(x, p, v) (5.28)

This equation is very similar in structure to the one-speed transport

equation, particularly if the collision frequency vE,(v) can be assumed to

be independent of 0. Either singular eigenfunction expansions52 or integral

transform (Wiener-Hopf) methods53 can be carried over from the one-

speed theory with little difficulty. A variety of boundary value problems

have been treated with this model.

A particularly useful mathematical approximation involves the assump-

tion of constant cross sections 2,(v)=2,. However one can also easily

handle the case of monotonic cross sections by defining the variable

transformations

115 E ‘(0). 4(x,n.v>= vstontxw)
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so that Eq. 5.28 can be written in the form

a_‘l' _ l °° 1 EH11’) . , , ,

11 ax +1(x.n.v)— 2 [0 do fdflmdq E,(v -»U)¢(X,1,,.>)

which is very similar to the one-speed transport equation. Mika52 has

utilized singular eigenfunction methods to solve this equation for a number

of the standard problems (e.g., the Milne and two adjacent half-spaces

problems). Williams53 has solved similar problems using integral trans-

forms and the Wiener-Hopf technique.

5.2.2 [1 BGK Models 13 A number of very similar problems have been

solved by Cercignani'9'54 and others in the field of linearized gas dynamics

by implementing the BGK collision kernel. When this model is introduced

into the linearized Boltzmann equation

v-%= 111

and this equation is projected onto transverse and longitudinal velocity

components [where we will normalize v—>£=v/vo, v0=(2n0kT0)'/2]

(P(xig) = Yo(x,€1) +(£22+€32_ 1) Y1(x,§1)

+252 Y2(x,£1)+2§3 Y3(x,£1)+ Y4(x’€)

one arrives at a system of transport equations

8Y0 _ V0 00 I I _£iz 2 2 1 V0

£1 ax +V0Yo-—\/; f_°°d£,Y0(x,£,)e +§(gl 7) V;

w l 12 oo _ ,2 I

X f d§'1(£'12_-)e_€1Y0(x,§',)+f dg'le £1 Yl(x’£l)

—66 2 _°°

BY] 2V0 00 I ,2 1 _6'2 I

‘El ax +V0Y1_3\/; _°°d§1(§1—5)e Yo(x’€,)

2110 no ,2

+ 115' 6*‘ Y (x,§’

3v; -.. ' I I)

——vo 0° ' — '2 r .

SEW“: 7,3/2 f_°°d£le 5' Y1-(x,§1), 1=2,3

61’

£1T4+VOY4_Q
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GENERAL STUDIES OF BOUNDARY VALUE PROBLEMS 1:1 325

The first two equations are coupled and describe longitudinal processes

such as sound wave propagation or thermal conduction. The third equa-

tion characterizes transverse processes such as shear flow, and it is decou-

pled from the rest of the set.

Since the equation characterizing shear flow processes has a form very

similar to that of the one-speed transport equation, it is not surprising that

this equation has been solved using both integral transform (Wiener-Hopi)

and singular eigenfunction methods for a variety of boundary value

problems in gas dynamics. The coupling between the longitudinal compo-

nents Y0 and Y1 in the set characterizing thermal processes gives rise to a

2 X2 matrix boundary value problem. For reasons that will become appar-

ent in a moment, this feature increases enormously the difficulty of the

corresponding boundary value problem in heat transfer. It has been only

within the past several years that such problems have begun to yield to

exact analytical methods.55

5.2.3 [1 More General Collision Models El Consider the general form of

the energy-dependent transport equation under the assumptions of plane

symmetry and isotropic scattering

8(1) _ _l_ +l , 00 r r r I

11 ,, +2.(E)<p(x.11.E)- 2 [_l 411 [0 41E 2.01 415111141015)

+s(x,p.,E) (5.29)

Since a solution of this equation in its general form is usually out of the

question even for infinite medium problems in which the spatial term

vanishes, let us turn instead to approximate methods for treating the

energy dependence (discussed in more detail in Chapter 7). The most

common schemes include the following:

i Multigroup energy treatments in which the energy variable is dis-

cretized and the integration over energy replaced by a summation

over energy groups.

ii Expansion of the energy dependence of (p(x,p.,E) in a finite set of

polynomials

N

<P(X,r1,E)= §l<1>,-(x.11)p,-(E)

iii Approximation of the scattering kernel as a N -term degenerate kernel

of the form

N

E.(E'4E)= z a.-,-p.-(E')4(E)
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326 U BASIC PROBLEMS IN TRANSPORT THEORY

All these schemes reduce Eq. 5.29 to a set of N coupled one-speed

transport equations. For example, the multigroup approximation leads to

aq, N 1 +1 , ,

118—x8 +ztgfpg(xrll)= ggl 2x8'->s_2_f_| d“ (P! (x’fl' )+sg(x’p')

or in matrix form

a 1 +1 . .

11—,,;<P+Z.<r=E.§f_l dh <1>(x,11)+s(x,11) (5-30)

It is possible to solve these systems of equations for full-range (e.g.,

infinite medium) boundary value problems. (Indeed, it is possible to solve

even the more general Eq. 5.29 formally in terms of operator inverses for

full-range problems“) However, as we noted earlier, the study of the more

interesting half-range boundary value problems must eventually encounter

the difficulties of a Riemann-Hilbert or Wiener-Hopf problem. It is not

surprising, therefore, that systems such as Eq. 5.30 lead to matrix

Riemann-Hilbert problems“58 of the form

11+(z)x-(z)-A-(z)x+(z)=o (5.31)

and to comparable matrix Wiener-Hopi decomposition problems. And,

unfortunately, these matrix factorization problems have proved extremely

resistant to attempts to construct solutions.59451

Although Mullikin59 has been able to demonstrate the existence of the

X 1“(2) matrices and to examine several of their properties, there has been

only marginal success (even using recent techniques such as the resolvent

integration method) in constructing an explicit representation of these

quantities. Although there have been many papers published on the

analytical solution of the multigroup transport equation, these efforts

usually lead to a set of nonlinear integral equations for the components of

the X matrices that must be solved numerically (and require considerably

more effort than would a direct discrete ordinates solution of the original

transport equation). It has only been very recently that even the simplest of

these problems, the two-group case, has been solved explicitly, and then

only under the assumption of constant total cross sections, 2,, =2,2.55’6'

Case62 has noted that it should be possible to solve the half-range

problem for several other special cases, including multigroup problems in

which only downscattering is considered, and degenerate kernel repre-

sentations in which the kernel expansion functions satisfy a three-term

recursion relation. (It was the latter property that Mika63 utilized in his

study of anisotropic scattering.)

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



SUPERTHERMAL PARTICLE TRANSPORT El 327

However, at least for the moment, the extension of integral transform or

singular eigenfunction expansion methods to solve boundary value prob-

lems involved with coupled systems of transport equations (e.g., multi-

group transport theory or temperature flow problems in rarefied gas

dynamics) represents a formidable task that can be attacked more directly

using numerical methods.

5.3 E] SUPERTHERMAL PARTICLE TRANSPORT [1 An extremely

important class of transport phenomena involves the slowing down of a

fast particle as it moves through a medium. If the energy of the particle is

much larger than the thermal energy of the host material, we can ignore

the microscopic motion of the particles comprising the host and treat all

interactions as if the energetic particle collided with particles which are at

rest. In such interactions the energetic particle can only lose energy

(upscattering in energy can be ignored). Such “superthermal” particle

transport problems arise in a variety of applications such as the slowing

down of fission neutrons in a moderator, the transport of energetic charged

particles through matter, and the thermalization of energetic particles in

gases or plasmas. The simplification of ignoring the motion of the back-

ground atoms dramatically changes the mathematical nature of the ap-

propriate form of the transport equation from that we encountered in

“thermalization” problems in which the energy of the particles was com-

parable to the thermal energy of the host medium. In particular, it changes

the scattering integral operator from a Fredholrn to a Volterra form.“

The neglect of microscopic motion in the host material greatly simplifies

the form of the scattering kernel. Indeed, on occasion it even allows for an

analytical treatment of the transport process. Furthermore, a new class of

approximate collision models can now be introduced which take the form

of differential operators in energy (“continuous slowing down” models).

The most dramatic example of superthermal particle transport is pro-

vided by the slowing down of very high energy fission neutrons (with

initial energies of 106 eV~107 kT). Because of the importance of this

process to fission chain reactor studies, the development of appropriate

theories of superthermal particle transport has been most intense in this

area. We therefore confine most of the subsequent discussion of this topic

to the case of fast neutron transport.

Let us briefly review the behavior of neutron cross sections in the range

1 eV < E < 10 MeV. In the slowing down range, we can regard the nuclei as

essentially free and at rest relative to the incident neutron. The elastic

scattering (potential scattering) of neutrons from nuclei depends only

weakly on energy and is isotropic in the center of mass system (s-wave

scattering) for energies less than several hundred keV. The scattering cross
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section for neutron scattering from nuclei of mass number A can then be

written as follows:“

ME’)

E,(E'—>E,Q’—+Q)= —-—2w( 1 _ 00E,

auto-s) if E<E’<E/a

= 0 otherwise

where otE[(A— l)/(A+ 1)]2, Mair-ft, and

1 E E’

SE (A+l) F —(A—1) E]

N1

As yet one further alternative representation, it is customary in neutron

slowing down studies to introduce a logarithmic energy variable, the

neutron lethargy, defined by

Eo

u=ln —

( E)

where E0 is a reference energy usually chosen as E0=10 MeV. Then the

elastic scattering kernel in the lethargy variable assumes the form

2.04’)

ER‘UI—Hl, = m

e"'_"8(110—S) if u—ln%<u’<u

We will also find the angle-integrated kernels of use:

2 E’

Z:e(EI—)E)=-(—l—i(a—)%, Z ’ .

E,e(u'—>u)= (lift?) e""‘, u—ln-i-<u'<u

Let us define the corresponding scattering operators

A E/a A A

5, e 5 [do] dE'e'2,,(E'_.E,n'->n) e

E

and their isotropic counterparts

s, 0 E fE/“dE'e'z,(E'->E) o

E
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which will prove useful in our subsequent investigations.

In general, inelastic scattering will also be present and must be consid-

ered. In light nuclei the threshold for inelastic scattering is of the order of 1

MeV, whereas for heavy nuclei the threshold may drop as low as 10‘ eV.

Although the detailed form of the scattering kernel characterizing inelastic

scattering is quite complicated (and is usually available only as a table

from nuclear data sets), a very useful model of the kernel makes use of the

rather long lifetime of the compound nucleus formed as an intermediate

state in an inelastic scattering reaction. This property permits us to assume

that the neutron forgets its initial energy and direction of motion during

the reaction, suggesting an isotropic scattering kernel of the form

zsi(E'_,E, Q'_,§1)= (41")_l211(E')f(E')8(E), E’ >15 (5.32)

0, E’ <E

where we have also noted that the neutron can only lose energy in such an

interaction. It should be noted that although this kernel is separable, it is

not a degenerate kernel in the sense of the synthetic kernel used in neutron

thermalization theory (cf. Section 5.2.1) because of the condition E ’>E.

Perhaps the most common such model for inelastic scattering is that

introduced by Okrent65 (which, in turn, is based on the Weisskopf

“evaporation model” of the compound nucleus). In this model one takes

g(E>= croEe-E”. [f(E)]_'= fdE'gw')

where C(E) is defined such that C(E)=l for E >0.5 MeV and C(E)=

15 / E for E < 0.5 MeV. One can dream up more sophisticated models that

describe neutron energy transfer between discrete energy levels.“ In this

instance, the transport equation becomes a differential-difference equation

in energy.66

However in the present discussion we use the general form suggested by

Eq. 5.32 augmented with a side condition on g(E) and f (E ) that guaran-

tees the preservation of the total cross section

[r<E'>1*'= [E'dEaoEuE't j—Z =g<E>

Then we can define the inelastic scattering operator as

s.- @ Egmf‘j—‘f,L°°dE'v'2..(E')[h<E'>]-‘° 51436.»)
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We can also use the idea of compound nucleus formation to suggest the

analogous form for the fission operator

do w ,, , do

aozmtnffifo dEvEf(E)°E HUM}

We are neglecting delayed neutrons by using this form. These can be

included in a straightforward manner if necessary, although one must

endure a bit of extra algebra.

One of the characteristics of compound nucleus reactions such as

inelastic scattering or absorption or fission involves the resonance structure

of the cross section energy dependence. The subject of resonance interac-

tions (particularly absorption) is a highly specialized subject whose trans-

port aspects are usually analyzed using collision probability methods (cf.

Section 2.1) and rarely are approached by way of direct solution of the

transport equation itself. Therefore we usually ignore this aspect of fast

neutron cross section behavior.

5.3.1 [1 Mathematical Properties of the Fast Neutron Transport Equation

El We can now write the transport equation describing fast neutrons in

operator notation as

8_n

at +v~Vn+vZ,n=Sen+5,-n+6.fn+s (5.33)

Our first task is to establish the mathematical properties of the collision

operators 5,, 5,, and 65. For reference, we recall that for the case of

thermal neutron transport, the scattering operator

5 ° Efd30’v’Es(v'—>v)°

was a completely continuous integral operator (which could be “symme-

trized” into a self-adjoint form by suitable variable transformations). A

similar analysis of the interaction operators in Eq. 5.33 has been provided

by Nicolaenko,67 who demonstrates that the elastic scattering operator S,

has the following properties.

i It is linear and continuous on the Banach space of continuous

functions of energy, C(EupEo)

ii It is completely continuous (therefore possessing no continuous

spectrum).

iii It has no eigenvalue spectrum except for the point at infinity.
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Actually the empty point spectrum o,,(Se) might have been anticipated

from the theory of integral equations. To demonstrate this, note that the

eigenvalue problem Setll=>ull is of the form

fE°°dE'K(E'.E)1.<E'>=114<E>

But this is just a Volterra equation with a bounded kernel, and such

integral equations have no nontrivial solutions (i.e., no point eigenvalues).

Of course this feature is a consequence of the lack of upscattering, which

converts

co _ 00

f dE’K(E',E) c 11116 _[ dE’K(E',E) o

0 E

F redholm operator Volterra operator

A more physical explanation is as follows. Notice that the existence of

eigenvalues, that is, of nontrivial solutions 111,\(E) to 8,111,541,, implies

physically that the scattering operator Se is able to “regenerate” or “pre-

serve” the energy spectrum of 111,,(E). But the absence of upscattering

implies that S, always generates an energy spectrum with a lower average

energy (see Figure 5.17). Hence scattering kernels in the fast regime are

incapable of maintaining an equilibrium energy spectrum; that is, the

corresponding scattering operators have an empty point eigenvalue

spectrum.

The inelastic scattering operator S, has a similar structure and can be

shown (i) to be linear and continuous, (ii) to be completely continuous,

and (iii) to possess an empty point spectrum except for the point at

infinity. The fission operator F is also linear, continuous, and completely

continuous. In fact, we can show that F is essentially a projection operator

1117((E)

E, E2 E, E2

Fig. 5.17 El Schematic of action of elastic scattering operator on the energy

dependence of ‘an eigenfunction.
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since

00 oo

F20 dErvx(Er)vr2j(Er)f dErrrvrrEf(Errr)°_EYF‘o

0 0

But although we can conclude that the residual and continuous spectra of

F are empty, it is not obvious that the point spectrum is empty (as we

found for the scattering collision operators). In fact, F provides an effec-

tive “upscattering" mechanism by way of the fission process that converts

low energy neutrons into high energy neutrons (via low energy absorption

and the subsequent fission events that yield high energy neutrons). This

will “regenerate” the energy spectrum, thereby creating point eigenvalues.

Now we must blend all these operators together into the transport

equation (5.33) to study fast neutron transport. In this type of “mixing” of

the spectral theory of various operators, there are few general rules (the

whole may frequently be greater than the sum of its parts); hence we must

consider each case individually as we come to it. We again work in

analogy to the procedure followed in studying thermal neutron transport

by first studying asymptotic relaxation problems in which we can avoid a

detailed treatment of the boundary value problems in energy-dependent

transport theory for fast neutrons.

5.3.2 El Asymptotic Relaxation Processes in Fast Neutron Transport [1

To provide a suitable foundation for our further studies, we first consider

the very simple problem in which neutrons produced by a time- and

space-independent source slow down in an infinite moderating medium

characterized by a mass number A. Furthermore, we confine our discus-

sion to the case of elastic scattering that is isotropic in the center of mass

system (s-wave scattering). Then the infinite medium “slowing down”

equation takes the form (in the lethargy variable):

(l_a)¢(u')+s(u)

[E.(u)+2.(u)]¢(u)=Limo/@0214’)

(5.34)

One can distinguish between two cases of interest?’ 1°

i Proton gas (hydrogen). A = l=>a =(A - l)2/(A + l)2=0 so that Eq.

5.34 becomes

2.(u)¢(u)= f_"wdu'2.(u')e"':"¢(u')+so)
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This equation is very easy to solve because it can be converted into a first

order differential equation for 0(u)52,(u)4>(u)

d_0

du

Es(u) _ 2K“) 0(u) — S(u) + a (5.35)

which can be solved for

0(u)=exp[ — fjoodu’ ] f_uwdu'(S(u') + 7g)exp(fiodu” )

In particular, it should be noted that for large u (or small E), the solution

assumes the very simple form (for small absorption)

1 l

¢(E)=¢(u) ~m~f

pl

dE

ii Moderators of mass number A >1. Now we must solve the more

general equation (5.34). This is rather complicated, since the equation

analogous to Eq. 5.35 is now a differential-difference equation. For the

case of zero absorption, we can apply Laplace transform techniques

directly to Eq. 5.34 if we note that it can be written as

0(a) = f0"dn'r<(n - u')0(u') + soap.)

where K(u) = e_“/(l — a) for 0 < u <ln1/a, and K(u)=0 otherwise. But

since we have a displacement kernel K(u’ — u), this equation is amenable to

a Laplace transform in lethargy

6(s)= fwdue_‘“0(u)

0

The transformed equation can be solved to find

0~(s)=S0[ l —K'(s):|_l

where

__ A e—ue—su l__e—A(s+l) l

= — =—— El —-

K(s) 1,; d“ l—ot (l—a)(s+l)’ A not

If we define the zeros of (l+s)(1—a)—l+exp[—A(s+l)] as s,, we can
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334 1:1 7 BASIC PROBLEMS IN TRANSPORT THEORY

invert to find the solution

00 (l_e—A(s,+l))es;u

6K“): S°8(“)+ 2'0 (1 — a) —Ae—A<s,+ I)

Next we consider the more general problem involving time-dependent

slowing down in an infinite medium, described by

8% +02,1v=s,1v+ s,.1v+ FN+S (536)

If we Laplace transform in time, this becomes

[.s+vZ,(v)]1ll(v,s)=(Se+ s,.+r)1s7+s+1v(v,0) (5.37)

Again, we consider several special cases.

i Time-dependent slowing down in a proton gas (hydrogen). We can

safely assume that Z,(v)=constant=2, in the slowing down range. Fur-

thermore, we take

20

Ea(v)= T“, S(v,t)=0, N(v,O)=No'o‘(v—vo)

Then Eq. 5.37 becomes

(s +22 + vZs)]\l= 2vZ,f°°dv’l(z+s) + N08(v — 00) (5.38)

U

We can multiply through by [s+23+1>2,]-'v-', integrate from v to vo,

and differentiate with respect to v to find

a; 22 ~ ~ 00 i/(v' s)

—= —‘ h ,s , h v,s E dv'—,—’

d” (s+Eg+vZS) (D ) ( ) j; D

But we can integrate this first order differential equation to find

- N + 2° + 2

h(v,s) = ——°(S “ 0° ‘2)

vo(s + 22 + 02,)

or finally

.. + 0 _

N(lm) : N02(0/00)2s(s Ea + 002,) + N08(v 00)

(s +22 + v2,)3 8 + 23 + v2.
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Hence we can invert for v <v0 to find

N

N(v,t)= —v—°(vESt)2[ 1 __ v10 + (00; I) ]e-(62,+22)1

If we examine the solution for the flux ¢(v, t)= vN(v, t) at speeds far below

v0 (v / v0<< l) and times such that v02,t>>1, we find

¢(v, t)~v(,N0(vZJ t)2e _ vzl'e _ 22'

Notice in particular that this asymptotic behavior is not exponential in

time; that is, the slowing down solution never assumes a separable form in

v and t for any time. This is explicit evidence of the absence of a point

spectrum of S,. The study of time-dependent slowing down in moderators

of mass number A > 1 is a bit more complicated, but it has been performed

by Marshak.“

ii Time-dependent slowing down in hydrogen in the presence of fission. If

we now include the fission term, we find that Eq. 5.38 becomes

.. oo '

(s + 23 + 02,)N = 202,}. dv’M/s)

0 v

+ rx(v)_/;)°°dv’v’Z!(v')N(v’,s) + N08(v — 00)

For convenience we assume that ZJ(v)=E}’/v, Ea(v)=Eg/v and take a

8-function fission spectrum X(v)=8(v—vo). Then we can solve this equa-

tion just as for the previous example to find

r2020}? + 002,)

exp — Zg—vzl’t

DO(VE?+UES)3 [ ( f) ]

4>(v, 1) =4>m.(v. 1) +

Here we note that ¢,m,(v, t) is nonseparable in v and t as before. However

we now find a separable term decaying exponentially in time as exp

[—(22—v2}’)t]. This term is due to the fission “feedback” or “upscatter-

ing” mechanism, which will allow an “equilibrium” energy spectrum—-

hence an exponential decay. That is, the fission operator F creates a point

eigenvalue A0= —(Eg—v2}’). Notice also that this exponential term will

dominate asymptotically in time, since the slowing down transient term

will be decaying in time as 0(exp[—(Eg+vz,)tl), hence will damp out

much more rapidly than the (v, t) separable term.

The study of spatial relaxation is more complicated, and we defer its

discussion until we have developed a more thorough understanding of
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energy dependent transport in the fast regime (next section). Suffice it to

say that we again expect a general solution of the form

N(x, 0)~No(0)e ' '°‘ + Nmms(x,0)

That is, the solution will contain a space-energy separable term represen-

ting the “persistent” mode established by fissions, and a nonseparable

transient due to slowing down neutrons (via either elastic or inelastic

scattering collisions).

5.3.3 [1 Boundary Value Problems in Fast Neutron Transport [II We

now turn our attention to a consideration of time-independent fast neutron

transport as described by

1% +2.(E)e(x.1.E)=(s. + 5.1+ tow (539)

subject to various boundary conditions we may place on the flux <p(x,p.,E).

We choose to work in one-dimensional plane symmetry for convenience.

Recall that our earlier treatment of such energy-dependent transport

problems for thermal particles met with little success for general scattering

kernels. Although the expressions for the cross sections in the fast regime

are a little more tractable (frequently in the form of separable kernels, in

fact), the solution of Eq. 5.39 is still beyond reach.

However there is one simplification that we can adopt for fast neutrons,

that of constant cross sections 2(E)=constant. Such an assumption,

though disastrous in the thermal range, is frequently not too bad in the fast

and slowing down range. And, as we will see, such an assumption allows

us to reduce the energy-dependent transport equation to an essentially

one-speed transport problem that can then be solved by the usual tech-

niques of Chapter 2.

To illustrate, first simplify the transport equation (5.39) by assuming

isotropic scattering and measuring x in units of mfp, E," '

arp _] +1 I I

“Khp'ihld#[5e+51+F]¢(x.11.E)+s (5.40)

Now suppose that we could construct the spectral representation of the

operator J = S,+ S,-+ F, that is, find a complete, orthogonal set of eigen-

functions 111,\(E) generated by J41,‘ =l\1,l1,\ so that we could expand

<1>(X,11,E ) = ; <1>1(X,11)\11(E)
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(where the summation includes an integration over the continuous

spectrum). In a similar fashion we also expand the source term

s(xrl'l'iE) = 2 sA(xrlL)’l’A(E)

A

and substitute these expansions into the transport equation (5.40) to reduce

it to a decoupled set of one-speed equations

a?’ +l ’ ,

“Tu‘mxilllfléfld11<1>1(x,14)+si(x.14), AE0(J) (5.41)

Hence the assumption of constant cross sections leads to a decoupled set

of one-speed problems, which we can then solve using the standard

methods. By way of contrast, energy-dependent cross sections E,(E) would

lead to a coupled set of one-speed problems and eventually to the matrix

Riemann-Hilbert or Wiener-Hopf problems. To illustrate this approach,

we consider several examples.

Example: Elastic Scattering. The appropriate spectral representation of

the elastic scattering operator Se corresponds to a Laplace transform in the

lethargy variable. That is, we rewrite the appropriate form of the transport

equation in the lethargy variable as

atp _ L 2n+1 +1 , ,

pa+qo—cz( 2 )P,.(11)f_ld14P,.(n)

n=0

Xfu du’f,,(u—u’)q>(x,p.’,u’)+s

u—A

where we have introduced an expansion of the angular dependence of the

scattering kernel in Legendre polynomials. If we now carry out a Laplace

transformation with respect to the lethargy variable u, we arrive at

- L +

Fig—Z +¢=¢ 2 (2nz+l )l:1(S)Pn(ll')[_lldll'P,,(11’)¢(x,u’,s)+§

"=0

But of course this equation is just the one-speed transport equation with

anisotropic scattering—except for the complex parameter s. Therefore we

can adapt the work of Mika63 to find the appropriate eigenfunction

expansion. Following Mika’s work, Mclnemey68 has solved several of the

standard boundary value problems (including an inversion of the Laplace

transform) for hydrogenous media.
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Example: Inelastic Scattering. Now the equation of interest is

a‘? _ g + I I 0° 1 r —I I r

1 8,, 'HP- 21,41 goof‘; 421101)] 101.1 .E >+s (5.42)

Nicolaenko67 has developed an integral transform appropriate for this

equation by studying the spectrum of the inelastic scattering operator S,.

To this end, he defines the transform (which is closely related to the Mellin

transform) '

1150111305 °°dE[h(E)]*—‘6(x.1.E)=<Jt[¢]

0

The inverse transform is given by

.,.(x,,.,15)=@ 2:41[h(E)]"¢(x.114)=‘JI1“[<i>]

2771'

We can apply this transform to Eq. 5.42 by multiplying through by

h(E)"_l and integrating over E, noting that

[°dEg(E)[h(E>]**'[E°°dE'[h(E')1-'¢(X.1.E'>= 5141.))

to find the transformed equation

8i) _ _ c +1 , - , -

11$ +<P— ,2 LI 1111 441111110)“

Hence this transform pair has performed the desired task of reducing the

energy-dependent transport equation to the usual one-speed form (with a

parameter A), which can now be managed with the standard techniques.

After solving the usual boundary value problems, one can invert the

integral transform.

Example: Fast Neutron Transport Including Fission. In the absence of

fission, both the elastic and inelastic scattering operators generate only a

continuous eigenvalue spectrum, or in transform language, the energy

dependence may be transformed out by an appropriate integral transform.

For elastic scattering, a Laplace transform in lethargy was applied,

whereas for inelastic scattering, a generalized Mellin transform in energy

was appropriate. The addition of the fission operator creates a discrete

eigenvalue of the combined operator T=S+F at the point }\O=cs+cf.

Therefore a corresponding discrete eigenfunction must be added to the
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appropriate integral transform to obtain the correct eigenfunction expan-

sion in energy (to achieve a complete set of eigenfunctions).

Consider, for example, the interaction of the fission term with elastic

scattering by defining

ll 00

TI 0 ES,o +F° Ecef du'g(u—u')° +cjx(u)f du' °

_00 —00

and the associated eigenvalue problem

T11Px(u) =NP>.(")

Now suppose we Fourier transform in lethargy, using

(iz(k)zf due"""“(p(u)

‘— (I)

to transform the eigenvalue equation

I‘ I I I w I I

4f 44 g(u-u >601 )+c,><(u)f 41 41.01 )=~p.

— w _ 00

into

~ ~ or w -

c.g(k)¢.(k)+ ¢)x(k)f 44 (p.01) =44». (5.43)

— w

There are two cases that must be considered separately.

i Suppose

<11.(0)= Lwdwdufio

Then we can solve Eq. 5.43 for all k as

- C 2200110 (0)

41.0) = ——’ _ f

A 0.200

or, in particular, for k =0,

_ _ 6190(0)

_ >\_ c

e

which implies that A0=ce+ cf. Hence in this case we have a discrete
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eigenvalue A0 and a corresponding eigenfunction

920‘)

15°“): e,+e,[1-g~(h)]

ii Suppose

®®=£Z¢n0ko

Now we find

Ce8~(k)‘l5x(k) =>\¢x(k)

But this is just the slowing down eigenvalue problem, which possesses only

a continuous spectrum

0 = ¢.§(k6), koae0

and corresponding eigenfunctions

<Px(k)=6(k_ko) [‘P>.(")=(2”)_leik°u]

Hence we find that Eq. 5.43 has a single point eigenvalue A0 characteristic

of fission regeneration and a continuous spectrum characteristic of neutron

slowing down. Using the properties of Fourier transforms, we can prove

that the corresponding eigenfunctions are complete, thus justifying the

eigenfunction expansion for a problem with combined elastic scattering

slowing down and fission as

1 °° -

u=a u+—— dkAk e‘k'l"

¢() o‘Po() zqrjlw o (0)

where the expansion coefficients are given by

a = 0° d u

. fwun)

on _k

Aan=f adno-hnoner

—00

A very similar analysis can be performed for the interaction of fission and

inelastic scattering.

In conclusion then, by using the assumptions of constant cross sections

and isotropic scattering, one can always reduce the energy-dependent
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transport equation to equivalent one-speed problems by subtracting out

the space-energy separable fission modes, then using the appropriate

integral transform (“eigenfunction expansion”) on the remaining slowing

down equation (Laplace transform for elastic scattering and generalized

Mellin transforms for inelastic scattering). The remaining one-speed pro-

blems can be solved, and the general solution can be formally recon-

structed.66 Unfortunately, the inversions of the Laplace or ‘311. transforms

are usually quite difficult, although asymptotic information can frequently

be obtained. Anisotropic scattering can also be handled in principle,

although only with considerable complications in the necessary manipula-

tions.

We have also noted that discrete energy level models of inelastic

scattering can lead to differential-difference equations66 that can be solved

for certain simple transport problems (e.g., infinite medium, time-depen-

dent slowing down).

It is important that we stress once again the difficulty of solving

boundary value problems in energy-dependent transport theory, even when

simplified models of collision processes are implemented. The analysis of

such problems invariably forces one to adopt either approximate methods

(Chapter 7) or numerical methods (Chapter 8) for solving the relevant

transport equation.

[1 PROBLEMS [II

5.1 Determine the time relaxation parameter A0 characterizing the decay of

the asymptotic mode of a neutron pulse in a sphere of nonmultiplying

material. Use a one-speed diffusion theory description. In particular,

sketch the behavior of A0 as a function of the radius of the sphere.

5.2 Demonstrate that the dispersion function A(s) characterizing the in-

finite medium transport equation within the synthetic kernel model (cf.

Section 5.1.1) has only a single zero, —l\0. Furthermore, verify that for a

l/v absorption cross section of the form Za(v)=Eg/v, one finds that

x0=23.

5.3 Sketch the completeness theorem and proof for the time eigenfunctions

characterizing the infinite medium transport operator in the synthetic

kernel model approximation.

5.4 Repeat the analysis of the pulsed neutron experiment under the

asymptotic transport theory approximation using a modified synthetic

kernel that includes a component to simulate elastic, coherent scattering

(cf. Section 3.1.1). This calculation would describe the decay of the

neutron pulse in crystalline materials such as graphite or beryllium.
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5.5 Study the spatial eigenvalue problem (5.19) by employing a synthetic

kernel model. In particular, identify the point eigenvalue spectrum.

5.6 Consider the neutron wave propagation problem in the one-speed

approximation. Demonstrate that for sufficiently large source frequencies

60, there will be no discrete relaxation modes 1:]. Sketch how you might

extend this result to the energy-dependent case.

5.7 Verify the small k expansions of the least damped roots of the

analytically continued plasma dielectric function D AC(k,s), assuming that

the unperturbed distribution function is that characterizing thermal

equilibrium.

5.8 Perform the decomposition of the BGK equation into longitudinal and

transverse components.

5.9 Determine the neutron flux that is established in an infinite, hydroge-

nous medium by a monoenergetic, uniform source emitting neutrons at

energy E0. (Ignore neutron absorption processes.)

5.10 Demonstrate that the asymptotic energy dependence of the flux in an

infinite nonabsorbing medium behaves as ¢(E)~l /Z,E.

5.11 One can define the slowing down density q(r, E, t) as the rate at which

particles slow down past the energy E per unit volume. Write down a

mathematical expression for this quantity in terms of the flux ¢(r, E, t) and

the scattering kernel 2s(E’->E).

5.12 Show that the neutron continuity equation can be written quite

generally in terms of the slowing down density q(r, E, t) as

1 3_¢ _ 8_q

0 at + V J+Ea(E)¢(r,E,t)— 8E + S(i-,E, t)

5.13 Develop the infinite medium slowing down equation in hydrogenous

moderators using the lethargy variable. Verify that this can be rewritten as

a pair of coupled ordinary differential equations:

aomn=—%+ao

-%+av=aono>

Solve these equations for the flux ¢(u) resulting from a monoenergetic

source emitting neutrons at lethargy u=0.

5.14 Solve for the time-dependent flux in an infinite hydrogenous modera-

tor containing fissioning nuclei. Be particularly careful to identify the

asymptotic term.
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5.15 Determine the eigenfunctions and eigenvalues of the operator S,-+F

(use the ‘311. transform in energy E).
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Nonlinear Transport

Processes

Nonlinear effects can become quite important in transport phenomena.

Nonlinearities arise in random walk or self-diffusion problems when the

transport process significantly perturbs the background medium. Examples

include photon energy deposition in radiative transfer processes and the

heat produced by neutron-induced nuclear fission reactions. Nonlinearities

become significant in collective phenomena when the particle distribution

is sufficiently far from equilibrium that the usual linearization approxima-

tions no longer apply. We are primarily concerned with the latter situation.

In these problems the nonlinearities enter by way of the collision or

particle interaction term (e.g., the Boltzmann, Fokker-Planck, or self-con-

sistent field or Vlasov term). Typical problems of interest include the

propagation of shock waves in gases and plasmas, thermal energy trans-

port in the presence of very strong temperature gradients, and, of course,

turbulence at both the macroscopic fluid level and the microscopic phase

space level (in plasmas).

Most of the analytical methods used to analyze boundary value prob-

lems in transport theory such as integral transforms or eigenfunction

expansions are restricted to linear equations. Furthermore, the fundamen-

tal mathematical theory of nonlinear transport equations is in a rather

primitive state compared to the theory of linear or linearized transport

equations. Therefore it is not surprising that there has been only limited

development of methods capable of dealing with nonlinear transport

problems.

We discuss three such methods: (i) the method of moments, which

attempts to develop a set of nonlinear continuum equations by taking

velocity moments of the transport equation, (ii) perturbation or iteration

methods, which utilize the integral form of the transport equation, and (iii)

direct numerical solutions of the nonlinear transport equation. As in most

areas of nonlinear analysis, the success of each approach depends sensi-

tively on the type of problem of interest, and very few general rules apply.

Before discussing these methods, it is useful to comment briefly on the

physical significance of nonlinear transport processes. Such nonlinearities

arise because of interactions among particles. To illustrate this almost

obvious, yet highly nontrivial feature, recall for a moment the general form

3461:]
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NONLINEAR TRANSPORT PROCESSES 1:1 347

of the transport equation

an an F an an

g1_+v'E-l-;.311_(E)enn

If the range of interparticle forces is short (e.g., neutral gases or liquids),

the dominant nonlinearity appears through the collision term (an/000°“.

For the purposes of our immediate discussion, we regard (an/8000,, as the

Boltzmann collision term

an A I I

(n)....=’("’")=f d’vll d9|"_V110(|v—vll.0)(n nl-nm)

which exhibits a quadratic nonlinearity. This discussion, however, would

apply as well to other collision models such as the nonlinear Fokker-

Planck-Landau term.

If the interparticle forces are of long range, then the “self-consistent

field” term, F/m-(an/av), provides the dominant nonlinear interaction. In

particular, for an electron plasma in the electrostatic approximation, we

recall F—>qE, where the electric field is given by Poisson’s equation

a _ 3

8r E~—477qfd 0(n n,,)

An important feature of nonlinear transport processes should be noted

at this point. Suppose we were to totally ignore all particle interactions.

Then the transport equation would look trivially linear

an an

E +v. 8r _

0 (6.1)

but the corresponding hydrodynamics equations would still exhibit an

apparently nonlinear structure:

3p _

at + V (pu) -0

0

p(gt- +u-V)u— —V-P

pc,,(%+u-V)0= —V-q—P:A (6.2)

Where is the contradiction? The apparent nonlinear structure of the

hydrodynamics equations (6.2) characterizing inviscid flow arises because
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348 El NONLINEAR TRANSPORT PROCESSES

we have chosen the “incorrect” hydrodynamic variables to represent the

continuum equations resulting from Eq. 6.1. If we had chosen instead the

variables

pEfd30mn(r,v,t), J§fd30mvn(r,v,t)

HEfd30mvvn(r,v,t)

l

= 3 ._

5 _fd 02 m02n(r,v,t)

1

QEfd30vEm02n(r,v,t)

we would have arrived at the linear set of continuum equations:

a—"i’+v-.r=o

8t

9l+v-n=0

8t

86

at +V Q—O

Thus we are immediately tempted to question the traditional choice of

hydrodynamic variables p, u,0 (which are obviously related to p, J, and (‘5

by J =pu and (‘5 =3p0 / 2), since these lead to the nonlinear hydrodynamic

equations (6.2). Since both sets of conservation equations are incomplete in

the sense that they contain too many unknowns (e.g., P and q or II and

Q), it would seem more nautral to work with the linear variables.

The choice of the more traditional hydrodynamic variables (p,u,0) is

motivated by the recognition that when we can in fact close the set, that is,

when the system is close to local thermodynamic equilibrium, the distribu-

tion function becomes a time-independent functional of p,u,0, not p, J,

and 5. And, of course, it is the presence of collisions that forces the phase

space density n(r, v, t) into the form n(r,v|p,u,0).

Thus it may make sense to avoid the choice of the traditional hydrody-

namic variables for the problems in which the system is very far from local

thermodynamic equilibrium (e.g., free molecular flow problems in which

we totally ignore collisions). More generally, however, one must face the

fact that the nonlinear continuum description is the appropriate macro-

scopic description. But this is not surprising, since we know that all the
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THE METHOD OF MOMENTS 1:] 349

demons hidden in the nonlinear structure of the hydrodynamic equations

(e.g., turbulence) correspond to the observed properties of fluids."3

6.1 [II THE METHOD OF MOMENTS E1 The method of moments“7

is one of the most popular approaches to analyzing nonlinear problems in

kinetic theory. In this scheme one first assumes a functional form for the

phase space density n(r, v, t) that depends on unknown hydrodynarniclike

variables. These variables are defined as velocity space moments of

n(r,v, t). One then obtains equations for these unknowns by taking velocity

moments of the transport equation. In general, the continuum equations

resulting from this approach are of a form quite different from the

conventional hydrodynamics equations.

To illustrate, let us first develop the Maxwell moment or transfer

equations characterizing arbitrary functions of velocity 41,-(v), by multiply-

ing the transport equation by these functions and integrating over velocity

to find

a . 3 2, 3 §'1_ 3

3' Id vvzpin+ m [d 011/,- av —fd vill,-J(n,n) (6.3)

a 3

at fd v¢|-n+

If we restrict ourselves to transport problems described by the Boltzmann

equation (for the moment), the collision term C[1[1,-] can be explicitly

written as

CH4] 5 fd’v1l.-J(m")= fd’vfdsv. fdQIv—nlwlm[4460-1140) 1

Of course, if the moment functions 11/,- formed a complete set, the

corresponding infinite set of moment equations would be formally equiv-

alent to the original transport equation. However in the method we

describe, the idea is to first assume a specific form for the particle phase

space density n(r, v, t) that depends on N of these moments, then use the N

corresponding moment equations to generate a set of partial differential

equations in r and t for these quantities.

The choices of the form of the phase space density n(r,v, t) and the

moment functions 41,-(v) are quite arbitrary. A variety of choices has been

proposed for various problems of interest. In fact, we have already seen

one example of this approach in the Grad l3-moment method. Here, the

phase space density was chosen to be a Maxwell-Boltzmann distribution

multiplied by a set of three-dimensional Hermite polynomials H,,(v)

n(r,v, 1) = "0(1) Nil \I'..(r. 011.6)

n = 0
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350 El NONLINEAR TRANSPORT PROCESSES

In this case one chooses N =2 so that the corresponding moments can be

identified as the hydrodynamic variables p, u,, T, pi], and q,. The corre-

sponding Maxwell moment equations then yield a generalization of the

hydrodynamic equations for these variables.

This particular choice of distribution would not be expected to be

appropriate for highly nonequilibrium flows in which n(r,v, t) is strongly

anisotropic. Therefore the most successful applications of moments

methods to nonlinear problems assume a form for the distribution

that allows discontinuities in velocity space to more nearly approximate

the known behavior for free streaming (large Knudsen number, Kn=

mfp/ L>>1). The most famous examples of this approach are the bimodal

distribution functions used by Mott-Smith8 to describe the propagation of

strong shock waves and by Lees9 to analyze a variety of highly non-

equilibrium flow processes in gas dynamics. We briefly summarize each of

these approaches.

6.1.1 E1 The Mott-Smith Theory of Strong Shock Wave Propagation [:1

Perhaps the classic nonlinear problem in kinetic theory involves the

propagation of a shock wave."H2 When a large disturbance is suddenly

introduced into a gas (say by a rapid, local deposition or energy, or by the

rupture of a diaphragm maintaining a pressure differential in the gas), this

disturbance will propagate into the adjacent gas with the local speed of

sound cs. But since c,~p'/2, a large disturbance will steepen into a shock

wave propagating faster than the speed of sound in the ambient gas ahead

of the shock.

From a mathematical point of view, a shock wave can be defined as any

abrupt transition that propagates through the gas, causing a change of

state, while (at least on the average) stationary in time in its rest frame.

Indeed, the Euler equations for an ideal fluid predict that this shock will be

a true discontinuity in p, u, and 0 propagating through the gas. In fact,

however, dissipative processes such as viscosity and thermal conduction

yield a finite shock thickness. ,

It is customary to characterize the strength of a shock wave by its Mach

number M, defined as the ratio of the propagation speed of the shock to

the speed of sound in the ambient gas ahead of the shock. The hydrody-

namic (N avier-Stokes) theory of shock waves is limited to Mach numbers

of ,less than M~1.2.'3"4 For stronger shocks, a more sophisticated kinetic

theory treatment is required.15

To be more specific, consider a one-dimensional shock propagating from

left to right with a speed D (see Figure 6.1). In the ambient gas ahead of

the shock, let us specify the state of the gas by the variables p=po, p=po,

and u= u0=0. We could have chosen to work with the set p, 0, and u, but
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M20

1

X Po

101

P0 _> —>P|

<—

U stream Downstream

_J'\ 9 Shock

Fig. 6.1 1:1 Steepening of a density perturbation into a shock wave and the

coordinate system moving with the shock.

the use of pressure is somewhat more convenient for this problem. Our

goal is the determination of the state of the gas behind the shock as

described by the values p,, p,, and u]. This analysis is most conveniently

accomplished in a coordinate frame moving with the shock (Figure 6.1). In

this frame, the gas appears to decelerate from a speed u(’,= D to a speed

u’= D — ul as it passes through the shock. We refer to these regions as the

“upstream” and “downstream” regions of the gas, respectively.

We can determine the downstream variables in terms of the upstream

variables without recourse to kinetic theory because only conservation laws

are required. To this end, consider the conservation equations for the gas

written as

a a 2 _

8,010+ ax(p+1>u )—0

2 Pl’ 3 "2 e _

at(pe+ 2 )+ ax(pu(e+ 2 +p) —0

where e is the internal energy (i.e., e= cp0) for the gas. For a steady state

problem, we can ignore time derivatives and integrate the conservation

equations across the shock to find the relations

Mass conservation plul = pou0

Momentum conservation pl + pl u,2 =pO +p0 n5

2 2

. u u

Energy conservation el + h + —2—' = e0+ Q + To (6.4)

P1 Po
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352 I] NONLINEAR TRANSPORT PROCESSES

These equations are known as the Rankine-Hugoniot relationsm'" for the

shock. We have identified the specific enthalpy h = e+ p / p. Note in

particular that the equation of state will determine h as a function of p and

p. Hence we have three equations for six unknowns, p,,, u,,, p0 and p,,u,,p,.

In most shock wave problems one is given the ambient gas density p,J

and pressure p,,. The “strength” of the shock wave is specified in terms of

either p, or u,,— u, = D. We can then use the Rankine-Hugoniot relations

to determine the other three variables. That is, the thermodynamic state of

the gas on either side of the shock will be completely determined.

By way of example, consider an ideal monatomic gas for which

_ = Y L

h _ CPO ( Y — 1 ) P

We can solve the Rankine-Hugoniot equations for this case to find

1

u<2>= 2—[(r— 1)Pe+(Y+ 0111]

P0

1

2= _

u] 2100

[(1'+1)P0+(7 ‘011112

(7“ 1)P0+(1’ +1)1’1

To determine the spatial variation of p(x), p(x), and u(x) across the

shock, that is, to determine the shock structure, one must solve the

appropriate form of the Boltzmann equation

(in

ma —J(n,n)

subject to the boundary conditions that the phase space density approach

the appropriate upstream and downstream equilibrium distributions

i n(x—>oo,v)—>n0(v;p,,p,,u,)

11 n(x-> — oo,v)—>no(v; p0,po,u0)

where

”°‘“"’P’">E(£.-)( m mann-1)

% 20

Since a direct solution of the Boltzmann equation is formidable, Mott-

Smith8 argued that for large Mach numbers the shock is thin and therefore

might be adequately modeled as two interpenetrating streams of particles,
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with each stream corresponding to either upstream or downstream condi-

tions. That is, he sought n(x,v) as a bimodal distribution

n(x,v) = Nofooloroo) + N|f0("v0|)

where

f<><"“’”>=(%)3/2¢XP{—é%[<vx—u>’+vz+vzll

Here No, uo, To and N l,ul, Tl are unknown functions of position, but they

are required to satisfy the boundary conditions such as

No(x—>—oo)=no, N|(x—>— oo)=0

No(x—>oo)=0, N|(x—>oo)= nO

One imposes the normalization condition

N00‘) + N1(x) = "0(X)

for all x. The conservation equations are used as further constraints on the

unknowns

Nouo+ N1u|= nouo

N0(00+ "1143+ N1(01+ mul) =Po+Poud

Nouo(%0o+ émué) + Nlu1(§01+%muf)=pouo(ho+%u§ (6.5)

One final condition is required to complete the determination of the

unknowns. Mott-Smith demanded that the bimodal distribution satisfy the

Maxwell moment equation (6.3). The choice of weighting function il/i(v) is

arbitrary and must be motivated by physical considerations. Mott-Smith

examined both the choices of ‘p,- = of and ‘p, = v3. For example, using ll/i = of

for a Maxwell molecule gas along with the assumed form of the distribu-

tion function, he found that the equation of transfer which augments the

conservation equations becomes

30 30

% [Nouo(?° + u§)+ N,u,(—m—l +

1/2

7700) uo [P0+P0“(21_90“0“_(N000+ N100]

u

ml».
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where A0 is the upstream mean free path. We can use the conservation

equations (6.4) to simplify this to

where

_ 2 l/zul “1 "0 3 00 V2

A=(;) .— (‘-27)——1/2+7(';)

0 o (OO/m) 0

Then integrating yields the local velocity u(x) as

1 u‘ x A

( “0 i 74X 1 i

This shock structure agrees quite closely with direct numerical solutions of

the Boltzmann equation for very strong shocks (M>5). For shocks of

intermediate strength, the bimodal approximation loses its validity, and

alternative approaches must be used.

We note in passing that a variety of other methods have been utilized to

study the kinetic theory of strong shock waves. Of particular note was the

classic work of Liepman et al.,15 who directly solved the integral equations

characterizing a shock wave within the BGK collision model (cf. Section

6.2). A number of authors have applied Monte Carlo methods to analyze

shock wave propagation.16

These methods have also been extended to study shock waves in

plasmasn‘20 However the analysis becomes considerably more com-

plicated because now one must consider two fluids (electrons and ions)

that can interact by both short-range Coulomb collisions and long-range

self-consistent fields. The key parameter that determines the nature of the

shock is the ratio of the Debye length to the downstream mfp. If AD/mjp<<

l, the electric fields can be neglected to first order and the plasma can be

treated as a single fluid, although with two characteristic temperatures,

since the electron-ion equilibrium time may be rather long in high temper-

ature plasmas. Then the appropriate hydrodynamics equations become

3p

a

E '1' 50010-0

Bu Bu _ l 3 3 Ha

P(a—t+u5)-—Tl'gpwt‘l'gen'l'gklh'l'llela]

a0, a0,_ 2 3,,

u_u|

140— u]

= {1+exp

m,- 8u 2 2m,- 8 30,- l

atfln- 3016? (—) spnkofgwe-h)

Z

3P

80 2

8+ 86L: 2 au+éme (Q)+2m88 80,, 1

a1 “a. 3 an 375; ea+?(”1-”¢)

8|
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"'1

“will "F—l 4‘ (E) l

\__V_./ \__V_./

Electron Ion Equilibration

thermal shock tail

conduction

preheating

Fig. 6.2 [1 The multistructured nature of a plasma shock wave.

One usually assumes that the ions carry the momentum of the shock,

11.,(6u/ 8x)>> 11.8(8u/ 8x) while the electrons carry thermal energy, ke(80,/8x)

>>k,-(80,/6x). These considerations result in a multistructured shock in

which electron thermal conduction carries energy ahead of the shock

causing a precursor “foot” in the ion temperature (see Figure 6.2).

The existence of the many alternative interaction length scales and the

occurrence of shock waves thinner than a collisional mfp (due to electric

field effects) make it more imperative to use kinetic theory for plasma

shock waves than for gas shock waves.20 The analysis of such turbulent

shocks is quite involved, since there is no generally accepted transport

equation characterizing the distribution of a turbulent plasma. Several

modeled kinetic or transport equations have been proposed (e.g., the

quasilinear kinetic equation developed in Section 6.3) in which an average

of the Vlasov equation over the fluctuating fields introduces a pseudocolli-

sion term.20 Many of the usual techniques (e.g., Mott-Smith’s method) can

be utilized to analyze these equations.

6.1.2 [1 Lees’s Method [1 An alternative method of moments has been

developed by Lees9 and applied with considerable success to a variety of

problems in gas dynamics. To illustrate this approach, consider heat flow”

between two parallel plates maintained at surface temperatures T0 and TL,

respectively (see Figure 6.3). The appropriate form of the Boltzmann

equation is

8n

0, —x = J (n, n)

Once again we seek a distribution function in a bimodal form

n(x,v)=n+(x,v)+n_(x,v)
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7%

Fig. 6.3 El Heat flow in a gas between

% two parallel plates.

except now the n:(x,v) are one-sided Maxwell-Boltzmann distributions:

2n:(x) vf+vz+vzz

n:(x,v)= _w3/z"3+(x) exp[ — (—ui'zx)

=0, 0 §0

, 0%0

and represent flows in the positive or negative x-direction. Since there are

four unknowns, ni(x) and ut(x), we need four moment equations. These

can be chosen as

—xmn ox =pux=0

d

d

a 5 x 771"‘)

zémn??? =mC[vxvz]

Note here that the first three equations correspond to conservation laws

since m, mo,,, and mo2 / 2 are collisional invariants. In addition, one can

apply the boundary condition of zero mass flow

p;;=mfd3vvxn(x,v)=0, x=0,L

and diffuse reflection

u+(0)=( 2l:nT0)1/2

u_(L)=( 2]::"L)1/2
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INTEGRAL EQUATION METHODS 13 357

This set of equations can be solved for both Maxwell molecule and hard

sphere potentials.2| The Lees’s moments method has proved quite success-

ful in describing both time-independent and transient rarefied gas flows.22

6.1.3 El Some Final Comments on Moments Methotb D The essential

feature of the moments method involves postulating a trial form of

distribution function with free parameters, which are determined by

weighted integrals of the transport equation. This scheme is very similar to

the variational or weighted-residual methods (sometimes known as synthe-

sis methods) described in the next chapter. And like these methods, it

suffers from a considerable degree of arbitrariness in the choice of the

appropriate moment or weighting functions. There is also usually some

ambiguity in specifying boundary conditions appropriate to the moment

equations (somewhat reminiscent of the Marshak and Mark prescriptions

for choosing boundary conditions for the P,V equations).

Finally we should note that the moment equations take the form of a

complicated system of nonlinear partial differential equations. The analysis

and solution of these equations (usually by way of numerical methods) is

itself a challenging (and usually frustrating) problem.23

6.2 I] INTEGRAL EQUATION METHODS El Several of the more

popular approaches to nonlinear problems attempt to represent them as a

perturbation from either continuum flow or free molecular flow. On the

simplest level one can develop a first collision theory that bypasses

the transport equation entirely. Rather, one simply considers the change in

the distribution function due to first collision encounters between freely

streaming particles and particles reflected from boundaries.“ One can

develop a collision iteration procedure in this fashion by integrating the

integrodifferential form of the transport equation along its characteristics.

But this scheme, known as the Knudsen iteration method, experiences

serious convergence difficulties.

A somewhat more sophisticated approach would be to develop a colli-

sion iteration method using the integral form of the transport equation

similar to that discussed in Section 2.2 but allowing for the nonlinear

collision term. To be more specific, one can integrate the steady-state form

of the transport equation to find

n = no + F [ n]

Then one can use this equation as the basis for an iteration scheme

n(")=n,(,"_')+F[n("_')]
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358 1:1 NONLINEAR TRANSPORT PROCESSES

Willis25 has developed this approach using the free molecular flow solution

as the zeroth iterate.

A related approach attempts to linearize the transport equation about

the free streaming form of the distribution function. Then classical

methods of linear analysis can be applied to solve the resulting equation.26

Unfortunately, more sophisticated studies of the Boltzmann equation

based on perturbation expansions in the inverse Knudsen number Kn=

mfp/ L have shown that these attempts will invariably encounter difficul-

ties because the zeroth-order solution, free streaming, is singular. That is,

all such approaches are in effect encountering a singular perturbation

problem in the large Kn limit.23 One must allow for a nonanalytic behavior

in Knudsen number to achieve a successful expansion about the free

molecular flow limit.”28

One can approach this problem from the other extreme by attempting to

develop interaction schemes based on continuum flow as a zeroth order

solution. An excellent example here is the analysis of shock wave structure

by Liepmann, Narashima, and Chahine.l5 These authors integrated the

BGK form of the transport equation characterizing a plane shock wave

dn

tax—E = 11(n0— n)

subject to the boundary conditions

m 3” m(v—“02

n(—oo,v)=nmznl(mg) exp ——-—20l—

_ m 3/2 m(v — u2)2

n(+oo,v)—n20=n2(-2w—02) exp[ 202

to obtain equations of the form

X X

n(x,0x 20) =[ dx' vono(x’,v)0; 1 exp[ —f dx" v0n(x,v)0;1 ] (6.6)

i 00 x’

Then by taking the appropriate velocity moments, one can obtain a set of

three nonlinear integral equations for the unknown hydrodynamic vari-

ables n(x), u(x), and T(x).

An iterative procedure can be used to solve these equations numerically.

First substitute the zeroth order estimate n0=n((,°)=continuum limit into

Eq. 6.6 to calculate a first estimate of n=n('). This can be used to

determine n(x), u(x), and T(x), then calculate a new ng), and so on.
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QUASILINEAR THEORY OF PLASMA DYNAMICS I] 359

Liepmann et al. used the Navier-Stokes solution to provide a first guess of

n(o), ulo), and Ta’) to begin this iterative process, with excellent results.

6.3 E1 QUASILINEAR THEORY OF PLASMA DYNAMICS 1] A

somewhat different approach that includes nonlinear transport effects to

lowest order is utilized in plasma physics to describe the time evolution of

a weakly unstable Vlasov plasma.29'3' To illustrate this approach, we

reconsider a simple one-component plasma model as described by the

Vlasov equation

an (in q

5+1’

8n

0v =0

3 _ 3 _

at E—4rrqfd 0(n no)

In our earlier studies of this problem, we linearized the Vlasov equation

about a stationary distribution n,,(v)

n(r, v, t) = no(v) + n,(r, v,t)

We then demonstrated that the linearized Vlasov equation could be solved

using Fourier-Laplace transform techniques to find

‘12 8"0 411]‘ N00‘)

_ D .

1 o+ioo n(k,v,()) m 8v k2 s+1|k|u

nl(k>v9t)=—-f dyes! ' — ' '

2m ,,_,-°° s+ik-v (s+1k-v)D(k,1s)

(6.7)

where

N0(u)Efd30n0(v)8(u—

It is usually assumed that the long time behavior of n,(k, v, t) is determined

by the zeros of D(k, is) with largest real parts. If we denote these zeros by

w],

2

_ w, ElNo/au _

D(k’wj)“ kzfduurwj/lkl ‘0
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360 El NONLINEAR TRANSPORT PROCESSES

we find the asymptotic solution for long times as

Of course we must assume the appropriate analyticity properties of No(u)

and no(v) to allow analytic continuation and contour deformation to pick

up the contribution from these poles (see Figure 6.4).

The location of the mode frequencies (their stability or instability)

depends on the detailed properties of the zeroth order distribution func-

tion. Of course if the plasma is unstable, that is, if modes occur with sj = im-

in the right half s-plane, our linear theory will no longer be valid. For

sufficiently weak instabilities we can extend the theory slightly to account

for mildly nonlinear effects. That is, we can study the time evolution of

mild instabilities.

To pursue this, let us return for a moment to the nonlinear Vlasov

equation. Suppose that at time t=0, n(v,0) is a stationary solution of the

Vlasov equation but is Landau unstable in the sense that several of the

poles sj lie in the right half s-plane. In the linear theory we would find

q2 8710 .

—— k

nl(k!v’t)~2 m av 4—w

J- wj—k'v k2 E

e "1'?’ (6.8)

1

(271)3

n(r, v, 1) = n(v,0) + f dame-wk, v, 1)

Suppose we redefine the average phase space density for a spatially

uniform plasma in analogy to this even for the more general nonlinear case

1

no(v, t) E T, f d3rn(r, v, 1) E ("(0) (6.9)

s-Plane I ill w\ /‘ s—Plane

<11» .1 s l a

. l 1"'/’.‘1 ‘1)

. l | IT)“

\

l l I.

. 1 I , \

. l | \>/(.‘\

. . | VT) ”/ 1'7‘,

1 l\’ \"

Fig. 6.4 U Deformation of Laplace inversion contour to pick up contributions

from unstable modes of plasma.
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QUASILINEAR THEORY OF PLASMA DYNAMICS E1 361

In developing a nonlinear theory we will assume that no(v, t) changes

slowly with time. That is, the formal definition of Eq. 6.9 of n0(v,t)=

(n(r, v, t)) allows a unique separation of the rapidly fluctuating compo-

nents n(k, v, t) exp(ik -r) from the slowly varying n0(v, t), which takes place

as the instability increases the amplitude of the unstable plasma waves.

To implement this formal definition, we proceed as follows by writing

n(r,v,t)=(n>+ n, = n0+ n,

E(r,t)=/QE§O+E, =E, (6.10)

Next we spatially average the Vlasov equation

a

E<n>+v><j£f+£ ;v-[§,E{§0n0+<E,n,>]=0

to find

811,, _ q a

w— <E,n,>

Notice here that if the perturbations E, and n, are regarded as small, then

the time rate of change of n0 is second order in the perturbation.

We now substitute Eq. 6.10 into the Vlasov equation and subtract Eq.

6.11 to find

an an an 8

81+". 8rl +%E1T°= ‘Ti'a'lE'"1—<E1"1>1

a _ 3

5-E,-4wqfd on, (6.12)

Thus far in our analysis we have made no approximations. However we

now will assume the following:

i That the second order term [E,n,—<E,n,>] can be ignored (this is

known as the quasilinear approximation).

ii That we can assume n,(k, v, t) varies sufficiently rapidly in time

compared to no(t) that in solving Eq. 6.12 for n,(t), we can ignore the

time dependence of n0(t) (“freeze” it) and solve only for the long time

behavior of n,(t) (this is known as the adiabatic approximation).

Notice that under these assumptions, Eq. 6.12 becomes just the usual
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362 El NONLINEAR TRANSPORT PROCESSES

linearized Vlasov equation

an, +v_8nl qE.8n0_

a 61+; lw-O

gr'E,=4rrqfd30nl (6.13)

Therefore we can use our earlier solution to this equation in the long time

limit to write

n,(k v t)~-- l

: --iwot

m [(k.v_w0) r EU‘J) —E(I(,O)e

where 010(k) is the most unstable mode of D(k,w0)=0,

916(k) =w,(k)+ 176(k), Y6(k) >0

If we now utilize this to calculate

l d 3k

(Elm)—7fWE(—k,t)nl(k,v,t)

we can find that the equation for n0(t) takes the form

3'10 _ a q 2 l dsk ' l 3

8t _ 8v (7;) V (2,031“ l"1)i(k-v—610)E(l"t) 07100)

(6.14)

To proceed further, we define the “spectral energy density” of the electro-

static fields as

l l E( —k,t)-E(k,t)

gk(t)E_I7 (277)?’ 87r

Here it should be noted that 8,,(t) evolves in time in a very simple fashion

g1(1) = 51.0382”

Therefore the quasilinear approximation results in a diffusion-like equa-

tion in velocity space of the form

an, a

61 —av'

D(v, 0%",(11) (6.15)
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PROBLEMS El 363

where the quasilinear diffusion coefficient is given by

3 6.0

D(v,l)=(%)zfd

while the field spectral density is given by

85

‘Th =270(k,1)5k(t)

The quasilinear kinetic equation has been applied to analyze the time

evolution of a variety of weak instabilities in plasma physicszml It also

applies (although in a somewhat different context) to describe the phenom-

enon of weak plasma turbulence.“33

Several attempts have been made to generalize quasilinear theory. For

example, one could utilize perturbation methods to include the contribu-

tion from the term [E|n|—<E,n|>], which gives rise to so-called mode-

mode coupling contributions.“ Considerable effort has been directed

toward extending this theory to the description of strongly turbulent

plasmas in which the wave energy is comparable to the particle kinetic

energy. To lowest order, such generalizations yield a damping contribution

to the unstable mode frequency (00(1) because of fluctuation effects. This

result, referred to as resonance broadening theory,”36 has been developed

from a variety of different perspectives and is essentially a renormalization

approach very similar to that used in statistical mechanics to account for

the renormalization of transport coefficients due to nonlinear mode-mode

coupling interactions.

El PROBLEMS l]

6.1 Integrate the steady-state hydrodynamics equations across a shock

wave to obtain the Rankine-Hugoniot relations.

6.2 Solve the Rankine-Hugoniot relations to determine the upstream and

downstream flow velocities u0 and u,.

6.3 Determine the maximum compression one can achieve across a plane

shock wave in an ideal gas.

6.4 Verify the form of the Maxwell moment equation for tp,-= of.

6.5 Derive the form of the integral equations characterizing the BGK

model of a shock wave.

6.6 Demonstrate that the quasilinear kinetic equation conserves particle

number and momentum but not kinetic energy.
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364 D NONLINEAR TRANSPORT PROCESSES

6.7 Demonstrate explicitly that the quasilinear kinetic equation plus the

equation for the field spectral density (‘5, conserve energy.

6.8 How would you expect the structure of the quasilinear kinetic equation

to change if the plasma were to become “Landau stable”—that is, all roots

of D(k,s) would lie in the left half s-plane?
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117D

Approximate Methods

in Transport Theory

The mathematical description of transport processes can become extremely

complex. We have noted that the transport equation characterizing such

processes is usually far too complicated to allow a direct analytical

solution for any but simple, modeled problems (e.g., simplified geometries

or scattering kernels). Therefore it is not surprising that transport theory

represents a fertile field for application of many of the standard approxi-

mation methods used in mathematical physics. Of particular interest are

the techniques such as perturbation or variational methods that make use

of the solutions to simple problems to estimate features of the solutions to

more complex problems. There are also several more specialized tech-

niques such as multigroup methods or degenerate kernel expansions, which

can be used to generate approximate solutions to transport problems.

However several complications appear in applying the more familiar

versions of perturbation theory or the calculus of variations to transport

problems. Foremost among these is the unfortunate fact that the operators

that arise in transport equations are not self-adjoint. Furthermore, we have

noted that transport operators usually possess a continuous eigenvalue

spectrum. These features demand that the more popular methods,"2 which

were developed for the treatment of self-adjoint operators characterized by

a point eigenvalue spectrum, must be extended considerably. The non-

self-adjoint nature of transport problems also frequently destroys one’s

confidence that the approximation technique will yield meaningful results.

This is particularly significant for variational methods. Finally, the tech-

niques considered here are usually restricted to linear transport problems.

7.1 El PERTURBATION METHODS [I We frequently encounter

situations in which a complicated transport problem possesses features that

are quite similar to a far simpler problem for which exact solutions can be

obtained. That is, the complexity in such problems can be represented

mathematically as a small perturbation on the transport equation char-

acterizing a far simpler problem. For these problems we can use familiar

methods from perturbation theory to obtain first order estimates of in-

tegral quantities such as eigenvalues or reaction rates in terms of the

3661:!
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PER'IURBATION METHODS D 367

solution to the unperturbed problem. For example, in nuclear reactor

calculations one is frequently obliged to estimate the effects of a small

change in the reactor core composition or geometry on the multiplication

factor km (the criticality eigenvalue). If these changes or perturbations are

sufficiently small, it is not necessary to repeat the criticality calculation for

the new core configuration; rather, the calculated flux for the unperturbed

core can be used to make simple estimates of the change in kg". Similar

problems arise in a variety of other transport phenomena.

Our primary concern is with the application of perturbation theory to

the analysis of eigenvalue problems involving the linear (or linearized)

transport operator. Such methods can also be applied to inhomogeneous

problems involving sources (e.g., to estimate the perturbation in the re-

sponse of a neutron detector due to the introduction of a small amount of

absorption in a subcritical assembly).

Traditional perturbation methods also have been extended considerably

to allow the estimation of nonlinear functionals or local properties of the

particle density itself. Furthermore, a variety of higher order perturbation

theories have been developed and applied. A particularly intense activity

involving such generalized perturbation methods has been stimulated by

transport problems arising in the field of nuclear reactor analysis.3

7.1.1 El Application of Perturbation Theory to Eigenvalue Problems [:1

The basic approach to eigenvalue problems is quite simple. Consider the

“unperturbed” eigenvalue problem

L4’! = 7W’! (7-1)

(which, presumably, we have solved for the unperturbed eigenvalues Aj-

and eigenfunctions 1111-). If L is not a self-adjoint operator—~and it generally

is not for transport problems—we must also assume that we can determine

the eigenvalues and eigenfunctions of the adjoint operator LT:

LU. j =>q¢j (7.2)

Here we will assume that the point spectrum of L’r is merely the complex

conjugate of the point spectrum of L, and that we have denoted conjugate

pairs of eigenvalues with the same index j. (This is usually the case in

transport problems, since as noted in Section 5.1, these operators do not

possess a residual spectrum.)

We now consider the eigenvalue problem characterizing an operator L’

which is perturbed from L by a “small” amount 8L:

. L'¢;=x;¢; (7.3)
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368 El APPROXIMATE NIETHODS [N TRANSPORT THEORY

where

L'EL+8L, ||8L||<<||Ll|

If we define the corresponding perturbations in the eigenvalues and

eigenfunctions by

x;=>\j+a>\j, ¢;=¢j+a¢j

our goal is to obtain a simple estimate of the perturbation 8Aj caused by

8L. To proceed, take the inner product of the perturbed eigenvalue

problem (7.3) with the unperturbed adjoint eigenfunction 41;:

(¢L<L+8L>¢;)=X,-(¢M;) (14)

But note that from the definition of the adjoint operator

(w.1-¢;-)=(Lvi¢;>

Furthermore, if we utilize Eq. 7.2, we find

(WIND =(>\7\Pl’¢})=>v(¢l,¢})

Thus we can return to Eq. 7.4 to find

(>\L--’\,-)(¢L¢3) =(¢I,8L¢;-)

01'

8,]: (vi-M114)

(‘W/j)

Thus far we have made no approximation. Our expression Eq. 7.5 for

the perturbation 8 A j is exact. But it is also very formal, since it involves the

perturbed eigenfunction 413-. But if the perturbation 8L is small, presumably

6%- is similarly small, and we can approximate =11;- by the unperturbed

eigenfunction \IJj. To be more precise, we can write Eq. 7.5 as follows:

a)‘: (‘P/tab”) + (gram!) _ (‘PlfiL‘P/X‘PLa‘l’j) + _ __

J (‘1740) (47,40) (MM/)2

If we retain only terms to first order in the perturbation (i.e., first order

(7.5)
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PERTURBATION METHODS [:1 369

perturbation theory), we find

1 .

(WV E (‘P1 ’8L¢1)

(111,40)

Hence, using only the unperturbed eigenfunction and its adjoint, we can

calculate the first order perturbation 8 A j in the eigenvalue A].

One can develop expressions for the first order perturbation in the

eigenfunction 8111,, as well as extensions of the calculation to higher order

by employing expansions in the unperturbed eigenfunctions 41,-."2

Although these topics are of great importance in quantum mechanics, they

find limited application in transport theory because of the complexity of

the eigenfunctions (e.g., continuous spectrum and singular eigenfunctions).

Although we will discuss higher order methods that utilize variational

calculus, we avoid a discussion of higher order applications of the more

familiar perturbation methods (“Rayleigh-Schrodinger” perturbation the-

ory).

The original expression (7.5) is occasionally used as the basis for an

efficient scheme to calculate the effect of perturbations on integral quanti-

ties such as eigenvalues even when a direct solution of the perturbed

problem for 111;- is available.

7.1.2 E1 The Adjoint Transport Equation El It is immediately apparent

that the adjoint operator and its eigenfunctions play a very important role

in the perturbation theory of non-self-adjoint operators. Hence our first

task is to derive the form of the adjoint to the transport operator:

LEV'V e + 01(0) 0 —- fd30'0'Z,(v’->v) O (7.6)

Of course, if we are going to consider eigenvalue problems such as

' L1. =81.

or inhomogeneous problems such as

Ln = s

we must include boundary conditions. For convenience we choose free

surface boundary conditions:

n(Rpv) =0, és-v <0
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370 [:1 APPROXIMATE METHODS IN TRANSPORT THEORY

That is, we define the domain of the transport operator 6D(L) by

@(L)E f (I', V) : f continuous in r, integrable in v, ]

f(Rs, v) = 0, és'v < 0

Next, if we are to define the operator adjoint to L by

(UgJ) = ( 3, U) (7-7)

we must define the inner product ( g, f). We choose to define this as

follows:

(8.05 fdsrfdsvgxwmv)

To construct L", we proceed to examine each component in the definition

of Eq. 7.6. We begin by noting immediately that since v2,(o) is real,

027° = 02, 0

Next, if we interchange orders of integration over v and v’, we find

(g, Sf)= fd3rfd3vg*(r,v)fdsv’o’Zs(v’—>v)f(r,v’)

=fd3rfd3v’fd3vv’ZI(v’—>v)g‘(r,v)f(r, v’)

If we now relabel vssv’, we can identify

5* o E Idsv’oEsfl-av’) 0

Finally, we examine

(g,v'Vf)=fd3rfd30g*v'Vf

=Ldzrfdso(v~és)g*(Rs,v)f(R,,v)+fd3rfd30(—v-Vg)‘f

where we have used Gauss’s law. If we note that the free surface boundary

condition f (R,,v)=0 for é,-v<0 eliminates the surface integral (the “con-

junct”2) for inward directions, it is apparent that by demanding that
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PERTURBATION METHODS El 371

g(R,,v) vanish for é,'v>0, we can eliminate this term entirely and identify

WV)‘ 6 = _ v.v 6

Hence we have now derived the adjoint transport operator Ll along with

adjoint boundary conditions which appear as a restriction on the domain

6D(L):

L'l'o = _vav o +vzl(v)o -fd3v’vZs(v—>V')°

where

, : , tinuous in r, integrable in v

6D L, 56W: g(r v) g con

( ) [ g(R..v)=0.é.-v>0

Since the domain of LI involves different boundary conditions, it is

common to denote functions in this domain with a dagger, that is, gl(r,v),

and to refer to them as “adjoint” solutions.

As a simple example, suppose we restrict ourselves to one-speed trans-

port theory for which

E 1 EQ'V° +2,1 —c2,fdfZ’f(Q’-Q)°

filo E -r‘z-v° +2,° -c2,fdft'f(fz-f2')o

These operators can be augmented by the boundary conditions:

<p(rt,,§1)=0, e,-Q<0

q>l(Rx,Q) =0, 13,-t) > 0

Now since f (Q’-Q)= f (12 ~12’), we ‘find that if we consider both the direct

and the adjoint problems

[it]; = s, Bltpl = s

the adjoint flux cpl is related quite simply to (p by

<Pl(r, 9) = s(r, — 9)

Note in particular that the adjoint angle-integrated flux is identical to the
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372 1:1 APPROXIMATE METHODS IN TRANSPORT THEORY

direct flux

¢*(r)= f4061(1.1‘0= [4060. —1‘r)=¢(1)

But we might have expected this, since we recall that the integral transport

equation (in one-speed theory),

¢(r) = f dW—dl [c2,¢(r’) + s(r)]

e

4'rr|r—r'|2

has a symmetric kernel and therefore is self-adjoint. A

In this sense, we find that the streaming operator SZ'V is “almost”

self-adjoint. The energy dependence of the transport equation can also be

symmetrized in many instances to yield a self-adjoint problem (e.g., gas

dynamics, plasma dynamics, and thermal neutron diffusion). In fact,

almost the only inherently non-self-adjoint class of transport problems

involves the slowing down of supertherrnal particles, a prime example

being the moderation of fast fission neutrons in a nuclear reactor. In these

problems, there is an intrinsic lack of symmetry because of the physical

nature of the transport process (i.e., particles will only lose energy in

collision events), therefore we would expect the non-self-adjoint character

of the transport equation to play a very significant role in their mathemati-

cal analysis.

In summary then, we have shown that the integrodifferential form of the

transport operator L is not only non-self-adjoint (actually “formally non-

self-adjoint”), Lia-EL, but, moreover, has corresponding non-self-adjoint

boundary conditions such that GDT¢GD. Although this feature complicates

somewhat the application of the standard approximation techniques of

mathematical physics (perturbation or variational methods), it does allow

for a rather interesting physical interpretation of the adjoint transport

equation.‘5

To illustrate this feature, suppose we consider the inhomogeneous (time-

independent) transport equation

Ln = s, n(Rs, v) = 0, és-v < 0 ‘(7.8)

and its adjoint

Llnl= s1, nl(Rs,v) =0, és~v>0 (7.9)

where the source term s1(r,v) that appears in the adjoint problem is

perfectly arbitrary. If we now multiply Eq. 7.8 by nl(r,v), Eq. 7.9 by n(r,v),
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PERTURBATION NIETHODS 1:1 373

integrate over r and v, and subtract the resulting equations, we find that

(nl,s)=(sl,n) (7.10)

(where we have used the definition Eq. 7.6 of the adjoint operator L1). This

relation holds for arbitrary sources s(r, v) and sl(r, v). In particular, it holds

for the case in which we choose

s(r, v) = 8(r — r,,)8(v — v0)

sl(r,v) = 02,,(r,v)

where 2,,(r,v) is the cross section characterizing a particle detector. Hence

Eq. 7.10 becomes

nl(r0, v0)= f d3r f d30 02,,(r, v)n(r, v)

But the right-hand side of this equation is just the response of the detector

to the particle density produced by a unit point source at position r0

emitting particles with velocity v,,. In this sense, then the adjoint solution

nl(r0,v0) can be interpreted as a measure of the “importance” of particles

emitted at (r0,vo) in contributing to the detector response. This explains

why the adjoint boundary conditions demand that nl(r,v) vanish for

outward directions on a free surface, since obviously any such source

particles could not contribute to the detector response. One occasionally

encounters a reference to the adjoint solution nl(r,v) as the particle

importance or irrqrortance function .4'5

7.1.3 1:] Specific Applications of Perturbation Theory to Transport

Problems [1

Time-Eigenvalue Problems II] We noted in Chapter 5 that the relaxation

parameters governing the time decay of the phase space density n(r,v, t) are

determined by an eigenvalue problem of the form

Lh= v-vo +020» — fd’v'v'ao'eoo h<v>=hh

Our first application of perturbation theory is to determine the change in

the fundamental eigenvalue due to a small perturbation in the cross
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374 [:1 APPROXIMATE METHODS IN TRANSPORT THEORY

sections governing particle interactions:6

E§(r, v) = E,(r,v) + 82,(r,v)

Z;(r, v’—>v) = Es(r, v’—>v) + 8 Zs(r,v’—>v)

- If we note that the corresponding perturbation in the transport operator is

8LE82,(r,v)° - fdav’v’SEs(r,v’—>v) o

we can immediately apply our general first-order perturbation result to

find

8,_ M811.) (‘Plld’v'v'szxnv'evwavfl

(\lhl’ll‘x) (461%)

As a specific application, consider the time eigenvalue problem char-

acterizing a spherical geometry as described by the one-speed transport

operator '

B o EQ'V° +z,o ->:,fdfz'f(r‘z'-fz)o

We recall that for this problem, <pl(r,Q)= <p(r, —Q). Now suppose that we

first perturb only the absorption cross section

21.0) = ZAP) + 3 ZAP)

Then the perturbation in the time eigenvalue is given by

- fd3rfd§2q>(r, —s‘1)az,,(r)¢(r,o)

8}\=

fd3rfd§2q>(r, -Q)q>(r,§2)

On the surface of the sphere, <p(Rs,Q)(p(Rs, —SA2)=O because of the

boundary conditions. Hence any absorption introduced near the surface

will cause only a small increase in the decay constant 7\. However absorp-

tion introduced near the center of the sphere will give a relatively large

change 8A, since the angular flux is maximum there (see Figure 7.1).
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2

‘4

Fig. 7.1 E] Perturbation in time ei-

genvalue as a function of position of

localized perturbation in absorption

or scattering cross section.

If we had perturbed the scattering cross section instead, say by adding a

small isotropic increment

8 E, (r)

azsujr-r'z) = 477

then

f darfdfitpfi, - s‘z)sz,(r)<p(r, o) f d3r¢2(r)8 2,(r) /41r

8}\= _

fdsrfdflqflr, —Q)q>(r, [d3rfd§l<p(r, —@)<p(r,

(7.11)

Now at the center of the sphere, the flux is essentially isotropic, <p(r,SAZ)~

(4w)_'¢(r). From the form of Eq. 7.11 we can see that the two terms will

cancel. Hence a change in the scattering cross section at the center of the

sphere produces very little change in A. However near the surface, the first

term vanishes (because of boundary conditions), and a net decrease in A

occurs.

Criticality Eigenvalue Problem [I A closely related application of per-

turbation theory involves the criticality eigenvalue problem characteristic

of fission chain reaction systems. Suppose we have determined the critical

composition and geometry of a nuclear assembly. Frequently we speculate
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376 El APPROXIMATE METHODS IN TRANSPORT THEORY

1

about just how the criticality of the system would be affected if we were to

make a small change in the assembly—for example, in a control rod

position or by a slight modification of the fuel concentration. Of course we

could re-solve the criticality problem for this new system. However if the

change or perturbation in the new system is small, we can use perturbation

theory to determine the desired information concerning the new system

(e.g., kc“) directly in terms of the solutions we have already obtained for

the original assembly.7

Many calculations involved in nuclear reactor analysis can be analyzed

merely by studying the effects of perturbations on a known result. For

example, to measure the reactivity worth of a control rod material, one can

insert it into a critical assembly, then measure the change in reactivity of

the perturbed system. Perturbation theory can be used to study the effects

of fuel burnup or poison concentration in a critical reactor. Frequently,

complicated geometries or cross section behavior (e.g., resonances) can be

reexpressed as a perturbation from a much simpler problem. And, in fact,

perturbation theory can be used to study the sensitivity of a criticality

calculation to uncertainties in cross section data (which always exist) and,

on occasion, to adjust such cross section data to yield better agreement

with experiment.

The unperturbed criticality eigenvalue problem can be written as

A

AI 0° / 1 AI A _ i __x_ A! I

o Vq>+E,(p fdofo dE 2,(E —>E,Sl—>S2)<p- k 4” fdfl fdE 12,66

or in an obvious operator notation

Mtp = 712F111 (7.12)

Since M and F are not self-adjoint operators, we must also consider the

adjoint unperturbed problem

1

Mt¢t= z Flqfi

Here we have noted that the fundamental eigenvalue that is of most

interest is real, so that kl= k" = k. We now consider the effect of perturba-

tions in either the transport or fission operators

M’=M+8M, F’=F+8F

on the criticality eigenvalue k. Aside from the minor complication that we

now have a generalized eigenvalue problem in the sense that operators
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PERTURBATION METHODS El 37’!

appear on both sides of Eq. 7.12, the derivation of a first order expression

for the perturbation in the eigenvalue is quite similar to that used for the

more traditional form of an eigenvalue problem, L¢=}\i,l/. In particular, if

we define the reactivity p of the system by

we can easily show that the reactivity change Ap=p’— p induced by

perturbations 8M and 8F is given to first order by

(<P*,(5F- 5M)<P)

A =—

p (<P*,F<P)

For example, if we imagine perturbing the system absorption and fission

cross sections such that

2;,=2,,+62,, z;=zf+sz,

then we find the corresponding reactivity change is given by

A _ (qaI,(4rr)_lXfdQ'fdE’v8Ef<p) _((p1,82aq))

p_ (<P*,F<P) (<P*,F<P)

Once again this result is consistent with physical intuition, since an

increase in 2,, causes a decrease in reactivity, whereas an increase in 2]

causes a corresponding increase in p.

One must be very careful in applying these formulas in practice. The

validity of perturbation theory rests on the assumption of small perturba-

tions—in a local sense. That is, these first order formulas would not be

valid for a strongly absorbing control rod, since the resulting perturbation

in the flux in the local vicinity of the rod would be quite large.

Further Developments [1 Certainly the most extensive application of per-

turbation methods to transport theory has occurred in the analysis of

fission chain reacting systems. Indeed, first order perturbation estimates of

integral parameters such as reactor core reactivity are used routinely in

reactor analysis and design and are commonly implemented in a variety of

the more popular computer codes. Such methods allow for a cheap and

rapid estimate of the reactivity effects of small, local perturbations. They

can also be used to provide an exact expression for the effect of an
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378 1:] APPROXIMATE METHODS IN TRANSPORT THEORY

alteration in reactor composition or geometry on reactivity if a direct

solution of the perturbed problem is available.

Therefore it is not surprising that the most significant efforts to extend

the conventional first order theory have also occurred in this field.3 These

extensions have branched out into several directions. There has been

considerable effort directed at developing methods for estimating the effect

of perturbations on the flux (or adjoint flux). Such methods extend well

beyond the familiar first order expansions in the unperturbed eigenfunc-

tions used in quantum mechanics. For example, when the perturbation is

localized, a detailed solution for the perturbed flux in the region of interest

can be coupled to the global solution to the unperturbed problem.8 One

can also develop equations directly for the difference between the per-

turbed and unperturbed solutions 8<p= (p' — qr.”

Yet another area of active investigation has involved the development of

higher order perturbation theories, so-called generalized perturbation theo-

ries, in which the perturbations in the solution are taken into account to

yield a second or higher order estimate of integral quantities. Frequently

variational methods can be used to develop such second order theorieslo

(see Section 7.2.3). Or traditional first order methods can be applied to the

alternative integral form of the transport equation, since this equation is

already of higher order in perturbations in the cross sections.ll We avoid a

discussion of these generalized perturbation theories and refer the inter-

ested reader to several comprehensive review articles?’12

7.2 E] VARIATIONAL METHODS El As we have seen, the complexity

of the transport equation either limits its practical utility to extremely

simple situations (one speed, one dimension) or necessitates the use of

elaborate numerical schemes to generate a solution. However there is one

very powerful and elegant technique of mathematical physics that occa-

sionally can be used to attack realistic problems directly: the calculus of

variations. This theory can be applied to transport problems in several

ways:1347

i Variational principles can be used to express in a compact and

elegant manner the mathematical content of a given physical prob-

lem.

ii They can be used to estimate “gross aspects” of the solution to a

given equation (e.g., an eigenvalue or a weighted average of a

solution).

iii Variational principles can be used to derive simple, approximate

equations in a consistent fashion by suitably restricting the class of
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VARIATIONAL METHODS 13 379

trial functions considered. (In fact, this is the most effective manner

in which to derive numerical schemes such as the multigroup or

discrete ordinate equations.)

Of course the application of variational methods to problems in transport

theory requires several modifications of the standard theories. As we have

noted, the transport operator is non-self-adjoint. Furthermore, to derive

the standard numerical schemes using variational principles, one must

consider trial functions that are discontinuous (e.g., step functions in space,

angle, or energy). But the extension of the standard variational principles

to non-self-adjoint operators and discontinuous trial functions has been

accomplished. Before considering these topics, let us quickly review the

standard theory of the calculus of variations.

7.2.1 [1 A Review of the Calculus of Variations2J3 I] What is a varia-

tional principle? Depending on your point of view, a variational principle

can be regarded as either (i) the characterization of a function (usually the

solution to some problem of interest) as the stationary point of an

appropriate functional, or (ii) a characterization of a number associated

with the problem as the stationary value of an appropriate functional. Here

we recall that a functional is a mathematical operation that converts a

function into a scalar, for example

F[q]=fa”4xq(x) and F[q]=q(a)

The collection of functions for which the functional F is defined is referred

to as the domain of F, 60(F).

We can perform many of the same operations on functionals that we are

accustomed to applying to functions. For example, we define the direc-

tional derivative of a function f (r) in a direction specified by a unit vector

h by

(IF-v)f(r)= 111%

In a similar fashion, consider a functional F defined on a domain of

functions 6D(F). Then if q(x) and h(x) are functions in 6D(F), we can

define the weak derivative of F at the “point” q(x) in “direction” h(x) as

51:[q,h]=1im ML]

e—rO E

(7.13)
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381 1:1 APPROXIMATE METHODS IN TRANSPORT THEORY

Notice that this derivative of a functional depends on the function h(x),

just as the directional derivative depends on the unit vector h. Further-

more, note that we can express the weak derivative in terms of an ordinary

derivative as

d

8F[q,h] = EF[q+eh] "0

We refer to 8F[q,h] as the first variation of F and to h as the variation in q.

If at some point q(x) the first variation 8F [q,h] is zero for all variations

hE 6D, we say that the functional F [q] is stationary at the point q. In this

sense

8F[q,h] =0 for all hEGD (7.14)

is the variational principle characterizing the function J(x). Usually J(x) is

also given as the solution of some kind of equation

f(17(X),X)=0 (7-15)

Hence the variational principle (7.14) can be regarded as just an alternative

specification of the solution q(x) of Eq. 7.15.

But several questions immediately arise.

Question I. What does 8F[q,h]=0 imply about F [q]?

In analogy with ordinary derivatives, we might expect F [q] to be an

extremum point of F [q], that is, F [q] would attain a relative maximum or

minimum value at 17. But this may not be the case. In fact, 17 usually is an

inflection point or saddle point of F [q].

Question 2. Does the variational principle (7.14) imply an equation such as

Eq. 7.15 for q(x)?

The answer to this question is yes. One usually can obtain this equation

using integration by parts. Consider as an example the functional

F[q] = f,bdxL[q(x).q'(x),x], ‘I'ME %

Let us now take the first variation of F [q,h] and set it equal to zero to find

the stationary point (7(X):

ar[.7,h]=Lbds{z,[q,q',x]h(x)+L,[.7,.7',s]h'(x)}=0, L,

m

gill‘:
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VARIATIONAL METHODS [l 381

If we integrate by parts, we find

fabdx{ L,- 7‘1-L,}h(x)+ h(b)L¢[r7(b),¢7’(b),b]

— h(a)Lq~[t7(a),zT(a),a] =0 (7.16)

But we must remember that h(x) is an arbitrary function. Hence Eq. 7.16

can be satisfied only if we require

8L d 8L

TffilaTrlo (7")

subject to boundary conditions

L.,[¢7(b).17’(b),b] =0. Manama] =0

[This makes use of what Courant and Hilbert2 refer to as the “fundamental

lemma” of the calculus of variations: If fZdxn(x)il/(x)=0, where 1p(x)E

C, for all 11(x)EC(2) for which 11(a)=11(b)=0, then ¢(x)EO.] Equation

7.17 is known as the Euler or Euler-Lagrange equation, and L is sometimes

referred to as the “Lagrangian” in analogy to classical mechanics.

The mere fact that a function J(x) satisfies the Euler equation does not

necessarily mean that F [q] has an extremum value at 17(x). The Euler

equation is only a necessary, not a sufficient condition for t7(x) to be an

extremum point. In fact, it is very difficult in general to obtain necessary

and sufficient conditions for a function 17(x) to be an extremum point of a

functional F [q]. There is no general theorem to even guarantee the

existence of such an extremum function. Hence we will be primarily

concerned with necessary conditions for the existence of stationary or

extremum points (such as the Euler equations).

One can easily develop generalizations of the Euler equations for various

other functionals. For example, if F [q] involves higher order derivatives

b

F1q1=f, dxmqeqc- ~-.ql"1.x1

the corresponding Euler equation takes the form

an d 8L ,,d" an _

(alt'uk‘) dfllaaml")

If the functional depends on several functions,

at; dx

b

F[qpqzr-wqnkf dxblqir--,q.;qi,---,q;;X]

a

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



382 El APPROXIMATE METHODS IN TRANSPORT THEORY

then setting the first variation equal to zero generates a set of Euler

equations:

6_L_1(1L_

aq, dx aq;

22 _ 1 9g _0

85” dx 3:7,’,

We can also consider higher order variations. For example, a necessary

condition for a functional F [q] to be a minimum at (7 is given by

“Legendre’s condition”: if (7(x) makes F [q] a minimum, then

Here, 82F is referred to as the second variation of F.

Question 3. How do we determine the variational principle that corre-

sponds to a given Euler equation?

This is perhaps the least satisfying facet of the calculus of variations. There

are usually many variational principles that correspond to the same equa-

tion (i.e., have the same Euler equation). Although all these variational

principles possess the same stationary point 17(x) (by definition), some

functionals may be more appropriate for the study of q(x) than others

(e.g., within the context of a given approximation scheme). Hence the

choice of a proper variational principle for a given problem is usually a

matter of trial and error—plus a dash of black magic.

Before we consider several explicit applications of variational methods

in transport theory, let us mention quickly a very useful calculational tool.

Recall that we have defined the weak derivative or first variation of a

functional with respect to a given variation h(x) by Eq. 7.13. But suppose

we were to choose h(x) to be a Dirac 8-function, h(x)= 8(x — x’). Then the

corresponding first variation could be identified as a functional derivative:

F +8—F

8F=lim [q 6] [q]

6—q _ H0 6 (7.18)

In particular, if our functional is of the form

F[q] = fdx’L[q,x’]
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Table 7.1 E] A Brief Table of the More Useful Functional Derivatives

F1111 1%;

fdx2(x)q(x) >3(x)

[482006481 "Ema-‘(10

C 0

q(X6) 8()6 — x6)

% x0 8’(x - x0)

f(x.y)q(x) roam—x’)

the functional derivative yields

8F , 8L , __ 6L

E'fdxi a)” x)‘ 84

Table 7.1 lists a few of the more useful functional derivatives.

Some Examples of Variational Principles U

i Sturm-Liouoille equations. For the important class of self-adjoint

second order differential equations, the usual variational principle chosen

is

F[<P]= fabdx{p(x)(§)2+q(x)[<t>(x)]2+2f(x)<v(x)}

Then, if we seek the stationary point (Xx), demanding h(a)=h(b)=0 for

convenience, we find that

8F[¢,h] =2Lbdx{ - dix(p—gg)+q$+f}h(x)=0

implies the Euler equation

3,4‘; p(x)§]+q(x>e(x)+f<x>=9
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384 E] APPROXIMATE METHODS IN TRANSPORT THEORY

which, of course, is just the usual form of the Sturm-Liouville equation.

ii Fredholm integral equations with symmetric kernels. The analogous

variational principle for self-adjoint integral equations [i.e., integral equa-

tions with symmetric kernels K(x,x’)= K(x’,x)] is

F[¢]=fa"dx{won’—<p(x>£"dx'1<(x.x'>¢<x')—21<x)<p(x)}

(7.19)

Then we find that

b b

8F[ ah ] =2 f dx{¢(x)— f dx’K(x,x’)¢(x’)—f(x)}h(x)=0

a (1

yields the Euler equation

_ b I I -— I

w>= f dx Kw no )+f(x)

iii Eigenvalue problems. Consider the general eigenvalue problem

Lil/x = M’).

where L is a linear operator. Note that if we take the inner product of this

equation with the adjoint eigenfunction ‘PI defined by

LW/i =>\*¢I

we find

(\PLL‘PA) =>‘(‘P>T;¢x)

This suggests a variational principle for the eigenvalue problem

F[ (PTJPII = (((PTEI-Sl (7.20)

We immediately find that setting the first variation equal to zero,

5Fl¢l,hl;¢,h]=0, implies the Euler equations

L¢=A¢ and LI¢I=}\*¢T

This variational principle, sometimes referred to as the Ritz principle, is not
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only an elegant formulation of the eigenvalue problem, but it is also of

considerable use in estimating the eigenvalues themselves. For notice that

if we set <p=1,l/,\, then

: ((pT’L‘l/A) =A

($1,411.)

Hence we find that the stationary value of F [1pl,<p] is just the eigenvalue A.

If we choose instead approximate “trial functions”

Flqvlnllil

<1>=¢1+81111 <1>l=41l+8¢l

we find that the error in the estimate of the eigenvalue A is just

6A=(6\111L6¢)—A(8¢l,8¢)

(@3110)

That is, a first order error in the trial functions leads to a second order

error in the estimate of the eigenvalue A.

If L is a self-adjoint operator, we can actually determine the sign of the

error 6 A. For in that case, we can expand the trial function in a complete

set of eigenfunctions

11>(X) = 2 11.44.01)

to find

_ a 2

(W) _ 214.12

Since the A,l are real, our estimate of the lowest eigenvalue A0 will always

be such that 8A) 0. That is, any trial function <p(x) will yield an estimate

A>A0. Similarly for the largest eigenvalue, we find that the variational

principle (7.20) yields 8A < 0.

We can actually use the variational principle (7.20) to generate all the

eigenvalues and eigenfunctions of a self-adjoint operator.

Theorem. The function 112, which minimizes F[<p]=(<p,Lq>)/(q>,<p) is an

eigenfunction of the self-adjoint operator L. This minimum value of F [p]

is the corresponding eigenvalue A,. If we were to impose the additional
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386 1:1 APPROXIMATE IVIETHODS IN TRANSPORT THEORY

condition that ((p,¢l)=0, we would find that (p—nlxz. Hence we can succes-

sively construct the eigenfunctions and eigenvalues of L by demanding the

auxiliary condition ((p,¢j)=0, j = 1,2, . ..,n — l to determine Ill" and A".

Proof. See Courant and Hilbert.2

Notice that these remarks hold only for self-adjoint operators. In the more

general case of non-self-adjoint operators, the A" are no longer real, and we

can no longer conclude that the stationary point of F [(pl,(p] will be a

relative maximum or minimum. (In fact, in the general case it will be a

saddle point.) This restricts the usefulness of variational principles to

provide bounds on the eigenvalues of non-self-adjoint operators (such as

the transport operator, unfortunately). Hence to obtain reliable eigenvalues

for non-self-adjoint operators, one must use rather accurate trial functions.

iv Inhomogeneous problems. We can always write the equations de-

scribing a linear system as an inhomogeneous operator equation

H¢=f

(In the homogeneous case, f =0, and we can take H—>L—A.) Frequently

we are less interested in the solution (1) to this equation than in some

weighted average of qb, which we can formally write as an inner product

(g,¢). (Here the weighting f might be, e.g., a detector response cross

section.) Hence it would be desirable to find a variational principle for this

average (g,¢) so that we could use crude approximate trial functions to

obtain accurate estimates of (g,¢). Such a principle was suggested by

Roussopoulos.I8 Consider the adjoint problem with a source term g

Hr¢r = 8

Then the Roussopoulos variational principle is based on the functional

Flow]=(g,<P)+(<P*,f)-(1P*.Hs>)

Notice that if either <p=¢ or q>I=¢I then

F[4>*.<1>] =(<1>*,f)=(g.4>)

We can calculate the total variation as

8F= —(6¢T,H8¢)

Thus F [(plnp] has the desired property of variational principles: first order
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errors in the trial functions produce only second order errors in the

quantity of interest—namely, (g,<1>).19 It is easily verified that the Euler

equations corresponding to F [<pl,<p] are just

H¢=f and Hl¢l=g

The Roussopoulos principle includes many other variational principles

as special cases:

(a) If H=Hl,g=f,¢l=¢, then

F—+F.[<1>] =2(f,<t>) - (91.1%)

(b) If H=Hl, H—>L—h, then

Mae—‘(s

(c) If we choose trial functions q>= c¢ and <pl= clol, we find

F [ 91.9] = C(13,<1>)+ ¢l(<1>l,f) — 661019.119) (721)

Hence 8F =0 implies that

C_ (¢T’f) and CT_ (g’f)

_ (6*, H41) _ (¢*.H¢)

If we substitute these back into the functional Eq. 7.21, we find an

alternative principle first proposed by Schwinger20

,

“Fairer—“2322?

These are just several representative examples of some of the variational

principles which have proven useful in transport theory. We discuss later

how such principles are applied.

The Rayleigh-Ritz Method El Thus far we have discussed various “indi-

rect” methods for determining the stationary point of a functional (i.e., by

determining the corresponding Euler equation for the functional). There

are more direct methods for determining the function q(x) that yields a

functional F [q] stationary. One such method useful for self-adjoint prob-

lems is the Rayleigh-Ritz method.2 The essential idea is to construct a
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388 El APPROXIMATE METHODS IN TRANSPORT THEORY

“minimizing sequence” of functions <p,,<p2,...,<p,, such that

F[<pn]=d,,>d and lim F[<p,|]=d

Il—rOO

In particular, Ritz suggested picking a complete set of functions {u,,(x)},

then choosing as the minimizing sequence, trial functions of the form

tpn=clul+czuz+ - - - +cnu,I

To determine the cn’s, we just apply 6F=0, which yields a system of

equations

E=0, k=l,2,...,n

80k

These will determine the cn’s, hence the (pn’S. Then by taking

nll_>1’foloF[(pn]=F[¢]=d

we can find the stationary value of F [(1)]. (Here one can usually prove that

dn—>d, but not that (p,,—+¢.)

Table 7.2 E] The Common Variational Principles Used in Transport Theory

Functional Parameter Euler Equation

. at. d 8L _

F1¢1=fdxL1¢.<p.x1 — o—q, -;;(a+¢.)-0

_ _ ‘I’

1.- : .____ A L ->\ ,L-L

‘PA ‘PX

T L‘l/ =>\\Px

F t, = _(—q’ J4’) A A

[Q (p1 (who) Ll\l/i=7\‘¢l

l M ) Mll’x=}\Fll'x

F ‘I’, = 2 (p

w ‘p1 (¢*.F<p) l‘ Ml¢l=l\*F*¢l

F [<Pl, ‘Pl = (g, <P) + ((P'Cf) — (spl, 11¢) (81¢) H4> =f

H14; = 8)‘

F[¢l=2(w,f)—(<P,H<P) (in?) H¢=f,H=HT
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A variation of this scheme is to choose a trial function <p(al,az,...,a,,,x)

dependent on n arbitrary parameters al,...,a,I (which may themselves be

functions). Then substituting this trial function into F [Q2] and taking the

variation with respect to a|,...,a,, yields a set of equations 8F/8ak=0,

k= l,...,n that determines the an’s, hence the “best” trial function of the

form <p(al,...,a,,,x).

Table 7.2 summarizes the more popular variational principles utilized in

transport theory applications.

7.2.2 El Applications of Variational Principles in Transport Theory El

We now demonstrate with a few relatively simple examples two of the

principal ways in which the calculus of variations can be applied to

transport theory calculations: (i) using variational principles to estimate

“gross aspects” of the solution to the problem of interest, and (ii) using

variational principles to derive in a consistent fashion approximations to a

problem too difficult to solve by a direct attack.2| We make no attempt to

explain in detail why a particular functional is chosen to attack a given

problem. As we noted earlier, the choosing of an appropriate functional

can be a rather ambiguous procedure.

Calculation of Integral Quantities El Frequently we are interested only in

rather gross features of the solution to a given problem. For example, we

might be concerned with eigenvalues such as the time or spatial eigenval-

ues of the transport operator or the criticality eigenvalue characterizing a

nuclear system. Or our interest might be with a weighted average of the

particle density such as a detector response. The essential scheme is to

characterize such quantities (which are just numbers) as the stationary

value of an appropriate functional. In doing so, we are able to obtain an

expression for these quantities that is remarkably insensitive to any errors

made in the solution itself. Indeed, we find that first order errors in the

solution result in only second order errors in the value of the functional

(which, of course, is the quantity we wish to calculate).

i Variational estimates of eigenvalues. Recall that the variational

principle (the Ritz principle) for the eigenvalue problem L¢A=M1A takes

the form

F [ @110] = ii??? (7.22)
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That is, the Euler equations for this functional are just

L111 =l\\l/x and LT¢1=V¢1

But it is of particular interest that for either (pl=111,l or 1p=111,\, the

functional assumes the stationary value

F[\PI.<P]=F[<P*,¢1]=>\

Of course, we do not know these eigenfunctions 111,‘ or 111,], otherwise we

could calculate ll directly. Instead, the best we can usually do is to make a

guess or estimate of these eigenfunctions, that is, insert so-called trial

functions into the functional. Suppose these trial functions (1: and (pl are in

error by the respective amounts 8111,‘ and 81111::

1P = ‘P1. + 811/1. and (P;r = ‘(bi + 81H:

Inserting these guesses into our functional, we find that the resultant error

in the eigenvalue estimate is

8,: (811121.) 0011.811)

(11*, <1)

Hence, as advertised, a first order error in the trial functions leads to a

second order error in the estimate of the eigenvalue. This remarkable

insensitivity of the functional can be used to great advantage in generating

rather accurate estimates of the eigenvalues of the problem of interest from

quite crude guesses of the eigenfunction and its adjoint.

Example. Suppose we attempt to determine that value of c_=_(112f+E,)/E,

for which a slab of multiplying material of width 2a will be critical, as

described by one-speed transport theory under the assumption of isotropic

scattering.6 Then the integral form of the transport equation for this

problem is just

1(8) = [148142.11 — 106(8) (123)

We can write this ‘as an eigenvalue problem of the form
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where K is the integral operator K c E(E,/2)f“_adx’E1(2,|x —x’|) 0. Hence

we can directly adapt the Ritz functional Eq. 7.22 to write

fifl=%g%l am)

But since the kernel of Eq. 7.23 is symmetric, we can identify K as a

self-adjoint operator so that the functional Eq. 7.24 becomes

inf" dxf“ dX'E1(E.|X—x'|)q>(x)q>(x’)

fifl= “ _“a a— 0%)

fwdxw) c

Now by making crude estimates of the critical flux shape [e.g., <p(x)=l or

<p(x)=cos'rrx/2a], we can utilize Eq. 7.25 to make rather accurate esti-

mates for the critical value of c.

ii Estimate of integral quantities. Suppose we wish to calculate a

weighted integral of the solution such as

R Efdsrfd3vvzd(r,o)n(r,v)

where Ed(r,v) might be a detector cross section. Here n(r,v) is the solution

to the transport equation:

v.Vn + 02,(l',v)n(r, v) — fd3v’ v’ES(v'—>v)n(r, v’) = s(r, v)

subject to boundary conditions such as n(Rs,v)=O, és'v <0. We can rewrite

this problem in a more abstract notation by noting that

where

(f,g)E fd’rfd3vf*(r.v)g(r,v)

while n is the solution of the inhomogeneous problem: Ln=s, where L is

the transport operator. But we have already considered the appropriate

variational principle for this problem, just the principle based on the
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392 I] APPROXIMATE METHODS IN TRANSPORT THEORY

Roussopoulos functional

F[q>l.<1>] =(vEd.<P)+ (<Pl.s)- (111,111)

The Euler equations generated by this principle are just

Ln=s and LlnT=vEd

and for either (p = n or 1pl= nl,

F[<pl,n] = Fl: ntrp] =(vZd,n)= R

Hence we need only insert our guessed form of trial function to calculate

an estimate of R.

This principle has been used to calculate a variety of quantities of

interest in transport theory. The usual trick in such calculations is to

manipulate the problem of interest into the form suitable for application of

the Roussopoulos principle. We illustrate with perhaps the most famous

application of variational methods in transport theory.

Example. The Extrapolated Endpoint for the Milne Problem. In this ap-

plication, we wish to obtain a stationary functional for the extrapolated

endpoint 20 characterizing the particle density in the neighborhood of a

free surface (see Figure 7.2).22 It is most convenient to work with the

integral transport equation (in dimensionless form)

¢00=1j)°°dx'E.(1x—x’1)¢<x’). 0<x<w (726)

/2

11°”

.0

Fig. 7.2 El Extrapolated endpoint zo for the Milne problem.
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We confine ourselves to the case of pure scattering, c =1, for convenience.

Recall now that we defined the extrapolated endpoint 20 as that value of

x<0 for which the asymptotic flux distribution deep within the medium

extrapolated to zero. But how do we obtain a functional with a stationary

value 20? This takes a bit of manipulation. First recall that the asymptotic

behavior of 4>(x) for c= l is

q>(x)~x as x—>oo

Suppose we subtract out this linear behavior by defining a function 0(x)

such that

¢(x)=x+ 0(x) (7.27)

Here it is evident that 0(x) approaches a constant as x—>oo. In fact, from

Figure 7.2 we can identify this limiting value as just the extrapolated

endpoint itself:

Xlilno 0(x) = z0

We use this fact to derive a functional for z0=0(oo). First substitute Eq.

7.27 into the integral equation (7.26) to arrive at a new equation for 0(x)

0(5.) = i f °°dx' E|(|x - x'|)0(x’) + )E,(x) (7.28)

0

Notice that if we take the limit x—roo of this equation, we find

0(w)=;f0°°dx15,(x)0(x)+g (7.29)

Now we can use these equations to construct a variational principle for

zo=0(oo). Here we need only recall that our variational principle for a

Fredholm equation such as Eq. 7.29 was given by Eq. 7.19. Hence we can

use this functional to write

1M: [0 440400] —.<p(x)f0 arm—#0400} (730)

[ifowdxaowoflz

But if q2= 0(x), then from Eq. 7.28 we find

110]=[%f)°°dxE.(x)<p(x)]_'=1:110»)—1]‘
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394 I] APPROXIMATE METHODS IN TRANSPORT THEORY

Therefore we can use Eqs. 7.29 and 7.30 to find the desired variational

estimate

[fowdxamnorf

Lwdx<p(x)[1v(x)—%LwdX’EI(IX—X'I)<P(X')]

—)Z0

F[<p]=%+

Alt»

This is a remarkably accurate expression for 20. Even the crudest ap-

proximate trial function <p(x)=1 yields an estimate of zo=%+ % =0.7083,

which should be compared to the exact value of z,,=0.7104.... This

scheme was generalized to the energy-dependent Milne problem by

Nelkin23 in 1960 and has been extended to several other boundary value

problems by Williams?‘

Variational principles can also be applied to estimate the values of nonlin-

ear functionals of the solutions to linear equations25 (e.g., reaction rate

ratios) or functionals of the solutions to nonlinear equations26 (e.g., the

Boltzmann equation).

iii Variational derivation of approximate equations. An alternative ap-

plication of variational methods in transport theory involves the use of the

functional to derive approximate sets of equations—that is, we use the

functional as a “Lagrangian” to generate approximate sets of “Euler

equations.” In this regard, consider again the Roussopoulos functional

F1919] =(sl»<1>)+(<1>l,s) -(<PT’L‘P)

with the associated Euler equations

L¢=s and Ll¢l=sl

That is, if the functional F is made stationary with respect to all variations

in (p and (pl, the corresponding Euler equations must yield the exact values

of 11> and (pl.

Suppose, however, that we do not let (p and (pl vary in an arbitrary

fashion, but rather we make F stationary with respect to a limited class of

variations. Then the resultant Euler equations will be only approximate,

and their solution will be only the “best” form of the trial functions for this

restricted class. (“Best” here is really a meaningful concept only for

self-adjoint problems.)
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Example. By way of example, consider the one-speed transport equation

(assuming isotropic scattering and sources)

3_4’ _C_21 "l I r _i

11 ax +E,¢(x,p.) 2 LI dp. 4>(x,p.) 2S(x)

and its adjoint

_ Si 1 _C_E' H I T r ._1 1

11,, +2.1» (XJI) 2 f_1d11¢(x.11)—23(x)

The corresponding Roussopoulos functional for this problem is

1: H11 11_13_‘P_1

F[v JP] fibril d11l2<1v$+2$<1> ‘wax to ZAP

c2 +1

WT) ammo] (7-31)

-1

Now suppose we compute the variation of F with respect to the restricted

class of all functions that have linear anisotropy only:

1 3 l 3

s>(X,11)= §¢0(X) + 5M0‘), <P*(X,11)= 5480‘) + EMKX)

where 4>o(x), qb(l(x), ¢l(x), and ¢l(x) are arbitrary functions of x. Then if

we substitute these trial functions into Eq. 7.31 and integrate over angle,

we find an approximate or “reduced” functional

F[<PTJP]_)FR[¢d’¢l;¢0,¢1]

l

= 5 fdxl¢ts+ S¢*—3c2.¢1¢.—(1 — omta

d4» d¢

._ T___°__ T__l

‘Pl dx ‘#0 dx

If we calculate 8FR=0, we find the corresponding approximate Euler

equations

d‘l’l _ _

E +(l C)2,¢0—S

gig +32,¢,=0
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396 El APPROXIMATE METHODS IN TRANSPORT THFDRY

and

dill _ T

—dx +(l—c)2, g—S

at ._

But if we identify ¢0(x)=¢(x) and ¢l(x)=.l(x), then we find that these

equations are just the Pl equations and their adjoint. Hence the variational

principle has implied that the “best” approximation to the solution of the

transport equation subject to the limitation of only a linear dependence on

angle is just the solution of the Pl equations. In this sense then, we have

utilized a variational principle to generate a systematic approximation to

the transport equation?"27 Such a procedure has been utilized to ap-

proximate energy,”30 space,“32 and time,33 as well as the angle depen-

dence of the solution. The application of a variational principle as an

approximate Lagrangian can also be used to derive the boundary condi-

tions most appropriate for a given approximation to the transport equa-

t1on.

7.2.3 I] Some Additional Topics [1

Error Estimates [1 For self-adjoint variational principles, we can easily

estimate both the magnitude and sign of the error in a variational estimate.

For example, consider the Roussopoulos principle for a self-adjoint inho-

mogeneous problem L¢=s. The appropriate functional is then

Fl: (P1 =2(q)’s) — ((19,149)

If we calculate the first variation, we find

8F[(Pt&p] =2(8(P,s_

We can continue on in this fashion to calculate the second variation as

62F= — gnaw)

But notice that this implies that if L is a positive definite operator, then

82F ( 0. But this implies that the stationary value of the functional will be

a minimum

F[q>]>F[¢]
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VARIATIONAL METHODS [:l 397

For non-self-adjoint problems we must utilize the functional

F[<1>l,<r>] =(SW) + (101.8) —(<1>*,Lq>)

Then we find that

1 '.7

82F= — 5(8<pl,L6(p) E O

and it is evident that even for a positive definite operator L, one cannot

characterize the second variation by a fixed sign, since it depends on both

81p and 8111*. Hence the stationary point is not necessarily an extremum.

Therefore a non-self-adjoint variational principle will not necessarily

select out of a given subset of trial functions the “best” solution—at least

in the sense of minimizing the error in the estimate of the value of the

functional. Indeed, this feature has inhibited a wider application of varia-

tional methods to the non-self-adjoint problems commonly encountered in

transport theory. It can lead to anomalous failures of variationally derived

approximate methods. Such failures are compounded by the absence of

adequate error estimates. These difficulties are particularly annoying when

they arise in numerical (computer based) attempts to solve the transport

equation.

It should be noted, however, that we can always convert a non-self-

adjoint problem into an equivalent self-adjoint problem, but this will be

accompanied by a rather stiff price. To illustrate, consider

Lq> = s and Llol = s’r (7.32)

We now define “symmetric” and “antisymmetric” combinations of these

operators and the corresponding solutions:

L. = %(L + Ll), L. = %(L — Ll), S. = %(S+Sl),

s. =10 — s’). <1. = %(¢+¢*). <1.= 101—<1")

so that we can write Eq. 7.32 as follows:

LS¢S + La¢a = SS

(7.33)

LU¢S + LS¢G = SG

Now suppose that we can invert the operator L,. Then we could solve for

¢a : LS_ — LG¢S)
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398 El APPROXIMATE NIETHODS IN TRANSPORT THEORY

and substitute this back into Eq. 7.33 to find a new problem

B¢s E (LS — LaL; 'La)¢s = s — LaL; Isa EQ

S

In particular we find that the new operator B is now self-adjoint

B*=L,-L,,L;‘L,,=B

and therefore we can use the self-adjoint form of the Roussopoulos

functional

FII‘P] =2(Q’(p)_(q)rB(p)

But, of course, the price we must pay for this “symmetrization” is the

inversion of LS.

A closely related approach is to rewrite Eq. 7.33 as a matrix problem

L: La ¢s _( Sr)

La Ls ¢a — s”

It should be apparent that this matrix problem is now in a self-adjoint

form.

Example. One instance in which this symmetrization can be carried out

arises in one-speed transport theory under the assumption of isotropic

scattering. Then we recall

. 2 . .

L¢ = Q -V¢+ 2,4>— 4—7; fdfz'¢(r,tl’) = s

A 2 A

rt=_.r r__s 11 '=1‘

L¢ QV¢+E,¢ 4wfdfl¢(r,fi) s

In this case it is apparent that

2s "/

Lfixhfifdm

La=g.vo

In particular, we should note that L, involves only the angular variable,

whereas La involves only the non-self-adjoint spatial operator. We can

explicitly invert the symmetric component to find

1 Z 1 .

_l=—o s — '0

L: 2, + 2,2, 41rfdn
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Therefore the B operator takes the form of a second order differential

operator

A l 23 l A I k 2.1‘ A I _

Btp— —o-v[-z-l e + fi-Gfdfl o ]Q'V<p+EI<p “fan tp—s

This symmetrized form of the transport equation has been used by a

number of investigators as the basis for a self-adjoint variational principle

for developing approximate transport methods.35

This approach becomes quite cumbersome if anisotropic scattering is

allowed. Then one must expand the scattering

21+1

4'”

N

z,(o' -o) = !_0( )2,P,(ll’ so)

and invert L, to find

L ' l l 2 2’

:_ O E — o + __

2t 2! [=0 m=

[2,(2. e1)‘ ' Yttmfda' Y"t,..(§l’)°

We consider this scheme further in Section 8.3.2.

Discontinuous Trial Functions D Although the true solutions to the trans-

port equation are usually continuous in space and angle, we are frequently

interested in obtaining a “discontinuous” approximation to these solutions.

An example is the approximation of a continuous function by a sequence

of step functions (see Figure 7.3) or localized polynomials, which are better

suited for numerical analysis. Such discontinuous approximations are

particularly useful for describing the angular dependence of the particle

density near boundaries or interfaces.

But there is an obvious barrier to deriving such discontinuous approxi-

mations from a variational principle. If our original equation involves

derivatives (as it does in transport problems), the variational functional is

only defined for continuous trial functions. Hence we would actually like

to extend the domain of the functional to include discontinuous trial

functions.

The general scheme for accomplishing this is to employ Lagrange

multipliers.”37 That is, suppose we wish to solve

f(¢,r)=0=>8F[¢]=0

subject to the constraint H [4>]=0. Then we would consider the functional

F[*Pl—>F[<P]+>\H[<P]
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400 El APPROXIMATE METHODS IN TRANSPORT THEORY

W(x)

X

Fig. 7.3 [:1 Discontinuous representation of (p(x) as a sequence of step functions.

where A is regarded as an arbitrary parameter (the Lagrange multiplier). If

we now take variations with respect to both (p and A, we find both the

original equation and the constraint.

Therefore the idea is to represent the continuity condition as a con-

straint, say relating two functions across a surface

¢+(Rs)_¢—(Rs)=0’ RsGS

Then the functional is augmented by a Lagrange multiplier characterizing

this constraint

F[4>]»F[¢]+ fds>1(r)[¢.(r)-¢_(r)]

Chapter 8 develops in some detail the use of discontinuous trial func-

tions in both space and angle for both the discrete ordinate and finite

element methods for solving the transport equation.

Higher Order Methods E] It is possible to develop higher order perturba-

tion and variational methods.38 To illustrate, let us consider the generalized

eigenvalue problem characterizing the criticality of a nuclear system

M¢ = AF‘), (7.34)

where the criticality eigenvalue is denoted by A= 1 / k. In traditional
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VARIATIONAL METHODS 13 401

perturbation theory, we decompose or partition the operators M and F

into unperturbed parts and “small” perturbations

M=M0+8M and F=F0+8F

How do we choose this partitioning? Two constraints are used: (i) we must

be able to solve the unperturbed eigenvalue problem

M 0¢0=>\0Fo¢o

and (ii) in some sense, the perturbations must be small

l|8M|l<<l|Mnl|, ll8Fll<<llF0ll

If we substitute this partitioning into the eigenvalue problem (7.34) and

take the inner product with the adjoint unperturbed eigenfunction 65, we

can find the perturbation in the eigenvalue as

(aim-w»)

a>.=

(¢3.F¢)

Our remaining task is to estimate the perturbed eigenfunction. In first

order perturbation theory, we would simply replace 41> by the unperturbed

eigenfunction 410. But we can do better than this by rewriting the eigen-

value problem as

M(‘Po'l'84>)—(}\0+8}\)F(¢0+8¢)=0

or in a rearranged form

We can now use this as the basis of an iterative method

new

(¢('(,F¢(n— 1))

s¢<">= (Mo—JW‘ W0)‘ ‘[ - (sir-M"- "snea- '>+ memo]

4,01) = (1,0 + 8¢,('I)

to generate higher order estimates of the eigenvalue. In particular one can

Show that 8A“) = O(8M)= O(8F)EO(e), 84>m= 0(a), 8AM = 0(5"), 6¢(")=

0(12”).
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402 El APPROXIMATE METHODS IN TRANSPORT THEORY

So far, so good. This is the standard way to approach the development

of a higher order perturbation theory. But we can accelerate this scheme

dramatically by using variational methods based on the Ritz functional

T

F1 ‘tall?

The general idea is to use this functional to estimate the eigenvalue, but to

calculate the trial functions by using perturbation theory

8¢(")=(Mo—A(”_‘)Fo)_'[ —(6M-1\<"-'>aF)¢<"-'>+ 8>\(")Fo¢o]

8¢T(n)= (Mg _}\(n— 01:6‘)— '[ _ (8Mt_}\(n— 1)8F1)¢’r(n— 1) + 8}\(n)FJ¢g]

This differs from the previous scheme because we now go up 0(122) at each

step of the iteration

A(n) = <p'l(n— l)’(p(n— 1)] = 0(H¢(r1—l)||2)= 0(£2(n+ l)_2)

Of course there is much more work at each iteration level, since one must

evaluate both 8o and its adjoint 8¢l. Nevertheless, this “supervariational”

approach to calculating eigenvalues can yield very impressive results.‘0

Blending together variational and perturbation methods to develop a

very rapidly converging iterative method is ideally suited to the accelera-

tion of numerical solution methods. We consider such acceleration

methods in more detail in Chapter 8.

7.2.4 El Synthesis Techniques [1 In “flux synthesis,” a very popular

method of approximation in transport theory, one tries to synthesize the

solution to a complicated transport problem out of solutions to several

simpler problems?“2 In a way this approach might be viewed as kind of a

poor man’s variational method.

Although this method has been used extensively for the solution of the

transport equation, it can be most easily described by considering a

comparable two-dimensional diffusion theory problem

_V'D(xry)v¢+z(xry)¢(x’y)=s(xry)

where q>(x, y) is assumed to be subject to suitable boundary conditions.

The principal idea in the synthesis method is to decompose such problems

into a set of simpler problems of lower dimension. In this case we would
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VARIATIONAL METHODS l] 403

decompose the two-dimensional diffusion equation into several one-dimen-

sional problems, which are considerably easier to solve.

In its simplest form we might apply the synthesis method by expressing

¢(x, y) in a separable form

¢(X,y) = ¢1(X)<l>2(y) (7-36)

In the original formulation of the synthesis method one assumed that one

of these functions was known, say ¢2( y). The scheme was then to attempt

to satisfy Eq. 7.35 with the form Eq. 7.36 in some weighted sense. That is,

one demanded that a weighted integral of the equation vanish:

fdy won — v-Dv¢.<x>¢2<y) +2(x,y>¢.(x)¢.(y>— sow] =0

Since 4>2( y) was presumed known, this integral (referred to as a “weighted

residual”) would then yield an effective one-dimensional problem for the

unknown function ¢l(x)

— d4‘; D<x>% + [200+ 1><x>82o>1¢mx>= so)

where

no); founmmuo)

Ema fdywomomzo)

d2¢2

dyZ

)

The choice of a weighting function w( y) was arbitrary. Frequently it was

taken to be 4>2( y) itself.

A much less heuristic approach is to use a variational principle to

accomplish the synthesis of the two-dimensional flux as a product of two

one-dimensional fluxes as follows: The appropriate functional for Eq. 7.35

is

Douro); fdyw(y>1>(x,y>(

Flqvl=fdxfdy[D(X,y)(V<P)2+E(x,y)q>2(x,y)—ZS(x,y)<1>(x,y)]

(7.37)
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404 El APPROXIMATE METHODS IN TRANSPORT THEORY

(We have noted that the diffusion equation is self-adjoint.) Suppose that

we seek our trial function in the form Eq. 7.36 so that the functional (7.37)

leads to the “reduced Lagrangian”

d 2 d 1

FR[(plt(p2]= dx dy D(X,y)[<ri 4'2 +11% & +E<Pi<1>§—ZS<P|<P2

dy dx

Now if we perform the variation 8FR with respect to the (112, we find the

approximate Euler equation

— dif,1>.(x>% +[200+D.(x)Br(x>]¢.(x>=s(x)

D.(x>= 1111101001). D.(x>Br(x)= fdyv(x.y)(‘{—ZZ-)2.

E.(x)= [11120111101 (1.38)

If we guess <1>2( y), we arrive at an approximate one-dimensional equation

for ¢l(x). Thus we can use the variational principle to develop a synthesis

approximation.

A more consistent procedure would be to take the variation 6FR also

with respect to (pl(x) to find

— § 0.01% + [2(1) + D.(y)B;(y)]1.(y)= so) (139)

D.(y)= 1111111011101). D.(y)B;o>= fdx1>(x.y)(ff%)2.

E.(y)= fdx2(x.y)1>%(x)

We could then iterate between Eqs. 7.38 and 7.39 to obtain a solution of

the form Eq. 7.36.

One can easily generalize this approach to synthesize three-dimensional

solutions out of one- and two-dimensional solutions, and so on. For

example, a common procedure is to attempt to represent the solution as a

superposition of separable terms

¢(X,y,z)= §l¢.(Z)x.(X,y)

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



VARIATIONAL METHODS II] 405

where the functions X,,(x, y) are presumed known and the unknown ¢,,(z)

functions are then detemiined by using weighted residual or variational

methods to arrive at a set of N effective one-dimensional equations.

More generally, we can summarize the synthesis approach“3 to solving a

problem of the form

H(x|,x2,...,y)¢(x|,x2,...,y)=f(x|,x2,...,y)

by first seeking the solution as an expansion in known functions in one (or

more) of the variables, say X,,( y):

N

¢(x|’ ' ' ".y) ; 21%0‘1, ' ' ')Xn(y)E(papprox

Then one can choose from several prescriptions to determine the un-

known coefficient functions <pn(x,,x2,...):

i Variational synthesis. One utilizes the appropriate variational func-

tional

F[ We] = ( 8m») + (qfif) — (W, 11¢)

to find the appropriate Euler equations

; [ fdyxI(y)Hx...(y)]<Pm(Xp~-)= fdyxJ<y)r(x..---.y)

ii Weighted residual method. Since tpappm seq), we know that Htpappmafi

f. Let us define the “residual error” as

g Elimapprox —f

Then the weighted residual method would determine the coefficient func-

tions (p"(X|,X2,...) by demanding that

H¢approx_f] =0

where w,( y) are specified weighting functions. This leads to the set of

equations:

2 [ fdy w.-o>H><..(y>]q>..(x..--->= fawn);
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406 El APPROXIMATE METHODS IN TRANSPORT THEORY

If we choose the weighting functions as the expansion functions them-

selves, w,-(y)=x,-(y), we arrive at the Galerkin weighting scheme. Note that

if we choose the weighting functions to be the adjoint to these expansion

functions, w,-( y)=X,-l( y), we return to the variational synthesis method.

The general procedure of synthesizing a complicated solution out of simple

(but not elementary) component parts has received considerable attention

in a variety of transport problems. Synthesis methods have been applied in

space, angle, and energy variables to simplify the form of the transport

equation. Such methods are particularly valuable for the simplification of

those problems in which significant details of the solution can be predicted

in advance. Then the “trial modes” in the synthesis solution can be chosen

in a manner consistent with these known properties, and a major part of

the calculational effort can be eliminated.

73 E] APPROXIMATE TREATMENT OF PARTICLE ENERGY DE-

PENDENCE E1 The cross sections characterizing the probabilities of

collision events depend very sensitively on the particle kinetic energy or

speed. This strong energy dependence has given rise to a variety of

specialized approximation methods that can be used to treat this variable.

In most cases these methods seek to replace the dependence of the particle

phase space density on the continuous variables E or v by a discrete

representation. This section reviews a variety of methods that are designed

to discretize the particle energy or speed dependence. To simplify this

discussion, we illustrate such methods by considering only the very simple

infinite medium problem

E,(E)¢(E)= f0°°dE'2,(E',E)¢(E')+ S(E) (7.40)

The extensions to problems with space, angle, and time dependence will be

obvious.

7.3.1 El Discrete Ordinates Methods E1 The most pedestrian approach

is simply to replace the continuous variable 0 <E < 00 by a set of discrete

mesh points E1,...,EN.44 The transport equation is then written for each

such energy E,-, and the energy integration is replaced by a numerical

quadrature over this set (with quadrature weights W):

N

E.(E,v)¢(E,-)= 2 w,E.(E,~,E.-)¢(@)+S(E,-), i=1,-.-,~

J=l
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APPROXIIVIATE TREATMENT OF PARTICLE ENERGY DEPENDENCE 1:] 407

This set of algebraic equations can be rewritten in an obvious matrix

notation

2,¢=s¢+s (7.41)

The discrete ordinate approach has received some attention in rarefied gas

dynamics“5 (where discrete velocity models have also been studied), since

the cross sections characterizing molecular collisions are rather smooth

functions of particle energy. However a discrete ordinates approach in

energy is rarely adequate to describe the more complicated interaction

processes encountered in neutron or photon transport.

7.3.2 [1 Multigroup Energy Methods [1 The most common approach in

neutron and photon transport problems involves breaking the energy range

into intervals or “energy groups” 0=EG,EG_1,...,E|,EO, then averaging

the energy-dependent cross sections over some assumed form of the flux

¢(E) within each energy group.“7 To illustrate, we integrate Eq. 7.40 over

the energy group Eg <E <Eg_l

fE“'dEz,(E)¢(E)=f£“"dE i fE""dE'2,(E',E)¢(E')

E, 5,-

Eg g'=|

Eg_|

+f£s dES(E)

and define the group fluxes

_ Earl

4,: [E dE<1>(E)

8

and the group averaged cross sections or group constants

I 5-1 I E-| E'-|

2 E— ‘ dE2 E, 2 . E— g dE s dE’2 E’,E

.. ,gfEs .() ,gfEs [Es] .( )

to arrive at the multigroup equations

G

2,,¢,= 2 18.8684 s8, g=l,...,G

s'=l

Once again we have replaced the original integral equation by a system of

algebraic equations. These can be written in a matrix form similar to Eq.

7.41.
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4“ I] APPROXIMATE METHODS IN TRANSPORT THEORY

Of course the multigroup equations are of only formal interest until we

prescribe a method for determining the group constants. The general

approach involves guessing or calculating an approximate form for the

intragroup flux ¢(E) so that, for example,

_ ] Ex-l ~ 1 58-‘

EVIL dE2,(E)¢(E)= ¢ f dEE.(E)¢.pp...(E)

g s 3 approx E,

It should be apparent that the successful application of the multigroup

method to transport problems with strongly energy-dependent cross sec-

tions requires a very careful choice of the energy spectrum ¢,,PP,OX(E). Most

commonly this is accomplished by way of a set of auxiliary calculations.

For example, the group constants to be used in a “few group” multigroup

transport calculation are typically determined by first solving a finely

structured multigroup problem in an infinite medium for ¢app,°x(E). The

subject of group constant generation has become a very highly developed

art in nuclear reactor analysis, and the interested reader is referred to

several of the standard texts on this subject for further details.“7

7.3.3 [1 Series Expansions E1 Yet another common approach involves

the representation of the energy dependence as an expansion in a finite

series of known functions Xk(E)

N

44E) 2 kg, 4.46m (742)

A variety of possible choices for Xk(E) have been considered. For ther-

malization problems the xk(E) are usually taken as Laguerre polynomials

multiplied by a Maxwell-Boltzmann distribution46 (or Hermite polynomi-

als if the speed variable is used”). If we substitute an expansion in such

polynomials into Eq. 7.40 and use the standard orthogonality properties,

we arrive once again at a matrix problem similar to Eq. 7.41 where now the

matrix elements are given as

[Et]|'j=(xi’ztxj)’ [s],~j=(XogXj)’ [4’],=(Xo¢)=¢i

(7.43)

Actually, the multigroup representation is nothing more than a special

choice of orthogonal functions

=¢approx(E)uk(E)

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



APPROXIMATE TREATMENT OF PARTICLE ENERGY DEPENDENCE l:l 409

where uk(E) is the unit square wave function

uk(E)E[1, Ek<E-<Ek_,

O, otherw1se

One can also choose an arbitrary nonorthogonal set of functions‘m“9 in

which to expand ¢(E). However it then becomes necessary to provide

some prescription for determining the matrix equation for the coefficients

¢,,. Two of the most common schemes for accomplishing this are varia-

tional principles and weighted residual methods. In the first method one

usually begins with the Roussopoulos functional for Eq. 7.40

F[sfiqv]=(wl,S)+(Sl,<P)—(<Pl,bs>)

then substitutes in trial functions of the form Eq. 7.42 for (p and (pl and

equates the first variation of the resulting reduced Lagrangian with respect

to 42,‘: and ¢k equal to zero to find, respectively,

(2, — S )rp = S and (2;r — 51):; = S’r

where

[2':lij=(xiT’2!xj)’ [slij=(xl’gxj)

Here we should notice that if we choose trial functions of the form

M(E)=¢kguess(E)uk(E), we would obtain an alternative derivation of the

multigroup equations, but with adjoint or bilinear weighting. In neutron or

gas thermalization problems, one can use detailed balance to symmetrize

ES(E’,E) and thereby obtain a self-adjoint collision operator (and varia-

tional principle):

Fl‘P]=2(‘P,S)_(<P,£¢) (7.44)

Then by demanding 8FR=0, we find that the matrix system (7.41) is

defined by

[21],,=(x.-,E,x,-), [5],,-=(x.-,5x,-)

A second approach is the weighted residual method in which the ok are

determined by requiring

0° N

[o dEwj(E){(z,-s)kzl¢kxk-s} =0, j=l,...,N
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410 El APPROXIMATE METHODS IN TRANSPORT THEORY

which yields

[Zl]ij=(wi’zlxj)’ [s]ij=(wi’sxj)’ [S]|-=(wi’S)

Here the {wj(E)} are some chosen set of weighting functions [sometimes

chosen as the xj(E) themselves].

Such nonorthogonal function expansions or “overlapping” group tech-

niques have been moderately successful in a variety of applications.

7.3.4 El Synthetic Kernel Models El Thus far we have discussed

methods that approximate the energy dependence of the solution ¢(E) to

the transport equation. A quite different tactic is to approximate the

equation itself by approximating or modeling the form of the scattering

kernel. One such approach replaces 2,(E',E) by the Green’s function for a

second order differential operator. There are two models commonly en-

countered in neutron thermalization studies in which this form occurs

naturally.“’7

i Proton gas model.

2 '—

(Fi)exp(£fi£)erf\/E'/kT, E>E’

2.(E',E)= 2

(-E—’,)erf\/E/kT, E<E'

ii Heavy gas model.

2s(E',E)=E:8(E’-E)

Z E+E’

+ .( )

kT (£)l/2[—8’(E’—E)+kT6"(E’—E)]

E!

In each instance the integral equation (7.40) can be reduced to a second

order differential equation.

A natural extension of these ideas is the generalized heavy gas or

primary model of the scattering operator S = 5 —2s proposed by

Horowitz50

S<1>=£Es—a—%{f(E){EkT-j% +(E-kT)¢(E)]} (7.45)

where f (E ) is an arbitrary function that is determined either by fitting to
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APPROXIIVIATE TREATMENT OF PARTICLE ENERGY DEPENDENCE El 411

experimental measurements or by a fit to an integral of the scattering

kernel itself, ES(E’,E). This model satisfies detailed balance and includes

some accounting of chemical binding effects. Moreover, the storage re-

quirements and computer time required to solve the differential equation

generated by Eq. 7.45 are quite small when compared to the labor involved

in solving the integral equation (7.40) directly.

Unfortunately this model fails to yield satisfactory results when strong

absorption is present (e.g., near a resonance in the absorption cross

section). To circumvent this, Cadilhac“ has developed a slightly more

general differential operator model of the scattering operator known as the

secondary model, which contains two free functions. If one writes the

scattering kernel as

u(E)0(E’), E >E'

M(E)2‘(E"E)=u(E')e(E), E<E’

then, in fact,

d

“=75?

where q(E) is the solution to the differential equation

_4_ L) _ - _ i i

A Mm H105) M1415) @1605)

Here the free functions j(E) and k(E) can be evaluated as

1(E>=[[EdE'uwsf'g[1001415)]. k(E)= [M(E>2.(E)]-'

For proper choices of j(E ) and k(E), this model will yield the proton gas,

heavy gas, Fermi age, or Goertzel-Greuling model under the appropriate

limiting conditions.7 Hence the secondary model is capable of bracketing

the thermalizing properties of the actual scattering kernel.

7.3.5 I] Degenerate Kernel Representations of Finite Rank [1 Perhaps

the most direct approach to approximating Z,(E',E) involves its replace-

ment by a finite sum of separable kernels

N

ZS(EI’E)E kg] ak(E)Bk(E’)
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412 El APPROXIMATE METHODS IN TRANSPORT THEORY

so that our integral equation (7.40) becomes

N no

E.(E>¢<E>= kg] axofo dE’Bk(E’)¢(E')+ S(E)

If we multiply by ,BJ-(E)/E,(E) and integrate over energy, we arrive at a

set of algebraic equations that can be written in matrix form as follows:

(I-A)¢=S

where

°° Brand/(E) _ °°

[A1,]; [0 dE—E'T, [<l>],.=fo dEB.-(E)¢(E),

00 [E

[sLEfO dE——S'EE;S(E)

The approximation of the square-integrable kernel of a Fredholm in-

tegral equation by a sum of separable terms such as Eq. 7.46 is a

well-known technique in the theory of integral equations.52 [The degener-

ate kernel (7.46) is sometimes referred to as a Pincherle-Goursat kernel]

This approximation has been used for some time in linearized gas dy-

namics in the form of the BGK kernel53 and its extensions?‘—56 The kernel

was first introduced in neutron transport theory in a one-term form

E.(E’,E)=BE.(E)M(E)E.(E’), B—'EfO°°dEM<E)E.(E)

for modeled studies of time-dependent thermalization by Corngold,57

Nelkin,58 and others. More general N-term expansions have been utilized

in formal analytical studies by a number of authors, including Koppel59

and Kuséer.60

Several attempts have been made to develop this method into a calcula-

tional tool for detailed thermal spectrum calculations. A preliminary step

in this direction was made by Shapiro and Corngold6| in a numerical study

of time eigenvalues for the pulsed neutron experiment. Gritton and

Leonard62 have applied this technique to a numerical study of the Kottwitz

problem with very limited success, while Turinsky and Duderstadt63 and

Mockel64 have combined the degenerate kernel representation with the

invariant embedding approach to transport problems.

There are a number of schemes available for determining the compo-

nents {ak(E)} and { ,Bk(E’)} in the degenerate kernel expansion.
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APPROXIMATE TREATMENT OF PARTICLE ENERGY DEPENDENCE El 413

i Orthogonal polynomials. The most obvious approach is to choose

ak(E) and ,Bk(E’) as orthogonal polynomials. However it can be easily

verified that this choice leads to the same matrix system that was obtained

for a direct polynomial expansion of ¢(E) itself.

ii Moments methods". Shapiro and Comgold61 constructed the kernel

by requiring that it preserve the total scattering cross section 21E),

detailed balance, and the first N energy transfer moments of ZS(E’,E).

This construction was found to yield reasonable results, provided the flux

was not far from Maxwellian. However significant discrepancies arise

when one applies this kernel to highly nonequilibrium phenomena. Versluis

and Mockel65 attempted to correct this poor convergence by using moment

preservation to determine the behavior of the kernel only near E,h=kT.

For higher energies E >>Elh they model the kernel using the higher order

eigenfunctions of the scattering operator 5 :

241535) = 1W5); X,.\P,.(E)¢,.(E')

iii Least square convergence criterion. Turinsky63 has taken a different

approach to overcome the inadequacies of moments methods. He avoided

an explicit requirement that detailed balance or energy transfer moments

be preserved, and instead tried to obtain the best possible pointwise

convergence to the true scattering kernel in a least squares sense. This

particular choice of the degenerate kernel representations appears to yield

the most satisfactory results for a wide range of transport problems.

7.3.6 [I Concluding Remarks [1 Our description of techniques for re-

placing the integral equation (7.40) by an equivalent matrix representation

suitable for computer calculation has passed from essentially “brute force”

mathematical methods such as discrete ordinates or multigroup methods to

more physically motivated approaches such as variational-synthesis and

kernel approximations. If intuition is satisfactory, this “input” of physical

information into constructing the matrix representation will result in

algebraic systems of much smaller dimension, hence lower storage and

computing speed requirements.

Several specific comments comparing these approaches are appropriate.

Since the physical information involved in the discrete ordinates approach

is nil, one would expect such methods to require a very fine mesh structure,

that is, to involve large matrix systems. The size of the system can be

reduced somewhat by going to an orthogonal polynomial representation,

but applications of this method in the past have encountered very slow
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414 1:1 APPROXIMATE METHODS IN TRANSPORT THEORY

convergence unless the spectrum was very close to a Maxwellian. Multi-

group representations remain the most popular method for treating the

energy variable. But again the size of the matrix system depends on how

well we can guess the intragroup fluxes ¢guess(E), and many ambiguities

arise when space, time, and angle dependence are included. The varia-

tional (overlapping group) methods are very powerful, provided one

chooses suitable trial functions [which again involves guessing the form of

¢(E )1. They are usually applied only for very low order systems (N =3, 4)

and yield excellent results if the spectrum is not perturbed too much from

the trial function shapes.

Each of these approaches attempts to approximate the unknown flux

itself. Hence there is no a priori way to evaluate the accuracy of such

approximations. In this sense, the alternative schemes that approximate the

scattering kernel itself exhibit a slight advantage, since the adequacy of the

particular approximation can be evaluated before one solves for 4>(E).

A somewhat more technical drawback of the methods that approximate

the solution <1>(E) is that they fail to preserve the eigenvalue spectrum of

the transport operator (either space or time eigenvalues), and in particular

they destroy the continuous eigenvalue spectrum. This can be a rather

serious shortcoming when one is studying relaxation problems (e.g., pulsed

neutron or sound wave propagation experiments). Both the secondary

model and the degenerate kernel models preserve the continuous eigen-

value spectrum, hence both methods have been quite successful in the

analysis of asymptotic relaxation phenomena.

The secondary model of Cadilhac presents an extremely attractive

scheme for treating energy dependence in neutron thermalization calcula-

tions. It requires very little storage and machine time, yet it is capable of

describing the gross features of the scattering kernel that are important to

neutron thermalization. It furthermore possesses the very desirable feature

of yielding the proper epithermal behavior of the scattering kernel. Perhaps

its only drawback is that it does involve only two free functions, j(E) and

k(E). If these are insufficient to model the details of the scattering kernel,

there is no obvious way to generalize the model to include more informa-

tion. That is, it is impossible to achieve convergence (in the mathematical

sense) of the secondary model to the true scattering kernel.

The degenerate kernel approximation does not suffer from this diffi-

culty, since by taking more and more terms in the expansion Eq. 7.46 one

can approximate the true scattering kernel to an arbitrary degree of

accuracy. This mathematical feature may be quite important when one is

concerned with very fine details of the scattering kernel. The degenerate

kernel approximation possesses in addition all the attractive features of the

secondary model (generates small matrix systems, preserves the continuous
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eigenvalue spectrum, is capable of describing solutions quite far from

equilibrium, and allows an a priori estimate of the accuracy of the

approximation) as well as numerous others. The only relative drawbacks

are a slight increase in storage requirements over the secondary model, and

a somewhat poorer treatment of the kernel behavior in the epitherrnal

range.

In summary then, we have reviewed and compared several of the more

popular methods available for treating the energy dependence in particle

transport processes. Although these methods can be implemented to sim-

plify an analytical study of a transport problem, they are more ap-

propriately applied to facilitate a direct numerical solution of the transport

equation. Indeed, as we have noted, the mathematical complexity of the

transport equations that realistically describe particle transport processes

almost always forces one to a heavy reliance on numerical (i.e., computer)

methods of analysis.

El PROBLEMS I]

7.1 Why is the adjoint system introduced in developing the perturbation

equations? Illustrate your answer with an example showing that only the

use of the adjoint system will yield the desired result.

7.2 Derive an expression for the second order correction to the perturbed

eigenvalue in terms of the unperturbed eigenfunctions. (Use the us-

ual Rayleigh-Schrodinger perturbation theory familiar from quantum

mechanics.)

7.3 Derive the adjoint of the one-speed diffusion equation

4 11¢ _

d, [u(x) d, ]+2.(x)¢(x>- so)

with boundary conditions such that the inward partial current at either end

of a slab is zero, j +(0) = j _(a)=0.

7.4 Derive the adjoint boundary conditions characterizing (i) reflecting

boundaries, (ii) periodic boundaries, and (iii) diffuse reflection for the

one-speed transport equation.

7.5 Determine the first order change in the reactivity Ap=8k / k due to a

perturbation in the scattering and absorption cross sections.

7.6 The accurate flux and adjoint flux in a subcritical system can be

calculated readily. The configuration of another system is only slightly

different. Find an expression for any desired reaction rate integrated over

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



416 1:1 APPROXIMATE METHODS IN TRANSPORT THEORY

the second system such that the expression has only second order errors

and/ does not depend on variations from the flux or adjoint flux of the first

system.

7.7 Demonstrate the validity of the result obtained in Problem 7.6 by

considering the following example. An infinite medium extends from x =0

to x = 00 and contains a plane source at x= xo. The flux is to be described

by one-group diffusion theory. The first system has an absorption cross

section 2,, and a diffusion constant D. The second system has the same

source and diffusion constant, but an absorption cross section Ea+8Ea.

Calculate the absorption rate throughout the second system exactly and

according to the derived perturbation procedure. Then show that the

results differ by second order terms in 8 Ea.

7.8 Develop the Euler equations for the following Lagrangians: (i)

Llq,q',q”,---,q‘"’,xl, and (ii) Llq1,---,q.; qi,---,q;,Xl-

7.9 Explicitly calculate each of the functional derivatives listed in Table

7.1.

7.10 Demonstrate that the total variation of the Roussopoulos functional

is of second order in the variations [i.e., 8F= —(8¢I,H6¢)].

7.11 By choosing trial functions q>=c¢,<pl=cl¢l, derive the Schwinger

variational principle from the Roussopoulos principle.

7.12 Evaluate the numerical value of the first zero, vo, of Jo(x) by using the

Ritz principle for the differential operator that generates Jo(v,,x) as eigen-

functions. Use simple polynomial estimates as the trial functions.

7.13 Use the Roussopoulos functional to estimate the total absorption rate

occurring in a bare slab in which the particle flux is maintained by a plane

source at the origin. Use simple polynomials as trial functions and com-

pare the variational estimate with the exact expression for the absorption

as given by one-speed diffusion theory.

7.14 Prove that the Ritz functional for a self-adjoint eigenvalue problem is

indeed an extremum principle. Give an explicit example of this feature by

using this principle to estimate eigenvalues for a bare slab geometry and

compare these to the actual eigenvalue.

7.15 Use the Ritz functional as a Lagrangian to derive the multigroup

transport equations. Choose the trial functions as

G

s(r, 15,9) = 21 u(r, sA1)x,,(E )

8:

where the xg(E) are disjoint step functions over the interval Eg <E <Eg_ I.

In particular, develop expressions for the group constants appearing in

these equations.
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DSIII

Numerical Methods

in Transport Theory

The complexity of the equations describing particle transport processes

usually forces one to implement numerical (i.e., computer-based) methods

of solution. Such methods seek to introduce approximations that convert

the integrodifferential (or integral) form of the transport equation into a

system of algebraic equations that is most amenable to solution by a digital

computer.

The most direct procedure is the discrete ordinate approach in which

the dependent variable in the transport equation <p(r, E, Q, t) is replaced by

a discrete set of values at a discrete set of points (r,-, E j, 9,04,). The

derivatives and integrals appearing in the transport equation must also be

replaced by a corresponding discrete representation by using finite dif-

ference and numerical integration schemes. In this way one arrives at a set

of algebraic equations for the discrete representation of the dependent

variable.

An alternative approach involves expanding the dependent variables in

the transport equation in a finite set of known basis functions, then using

either orthogonality properties or more elaborate schemes such as weighted

residual or variational methods to arrive at a set of algebraic equations for

the expansion coefficients. We studied one example of this approach in

Chapter 4 when we developed the PN expansion of the angular dependence

in spherical harmonics (or Legendre polynomials). A somewhat more

general and powerful scheme involves expansions in localized basis func-

tions (so-called finite elements) and is considered in some detail later in

this chapter.

Such procedures eventually lead to a large system of algebraic equations

for the discretized representation of the solution to the transport equation.

These algebraic equations can then be solved using standard numerical

algorithms on a digital computer.

Unfortunately, such a calculation becomes an immense undertaking if

only a “brute force” discretization of the transport equation is employed.

For example, a typical mesh size of 100 X 100 X100 space points, 10 energy

points, and 10 angle points would yield a set of IO8 simultaneous algebraic

equations for each time step—a rather formidable task, even on modern

digital computers.
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NUMERICAL METHODS IN TRANSPORT THEORY 1:1 421

Hence we cannot blindly depend on the computer to solve transport

equations; rather, we must rely as well on physical insight to reduce the

transport equation to more manageable form before applying discretiza-

tion methods. For example, we can usually eliminate several of the

independent variables in the transport equation in the analysis of most

problems of interest. Or we can utilize an approximate form of the

transport equation as the starting point for the development of a discrete

representation.

To be more specific, it is customary in most transport calculations to

begin with the multigroup form of the transport equation (cf. Sections 2.2.1

and 7.3.2) in which the scattering kernel has been expanded in a finite set

of Legendre polynomials (cf. Section 4.2.2)

1 30> A

o—g 8-: '1' SI 'VQS +2,g(p8

: 21 [20 2 lylm(g)zlg’gfdnl Ihr(fl’)(pg’(rr 9,1044),

g’ = = m = —

In the vast majority of transport problems, one solves the multigroup

equations successively as a sequence of effective one-group or one-speed

problems in which the contribution from other energy groups g’ is treated

as an effective source term and combined with s,,

L l

sge“: 2 2 2 Y!m(n)2[g’gfdn’ !7n(fl’)(pg’(r’ n,’ t) +sg

g'ség 1=0 m=—l

Therefore we can confine our attention to the numerical solution of the

“in group” transport equation that assumes the one-speed form

L I

11-v4>+2.<p= 2 2 Y...(1‘1)E..fd1“r16:.(0')4>(1.1121)+s(1.0)

[=0 m= =1

(8.1)

In this equation we have suppressed the group index g and restricted our

discussion (at least for the present) to time-independent problems. We now

examine a variety of powerful numerical methods for solving this equation,

including the discrete ordinate or SN method, the PN method, finite

element methods, and collision probability or integral transport methods.

(References l to 4 are excellent reviews of these methods.)
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422 I] NUMERICAL METHODS IN TRANSPORT THEORY

8.1 D THE DISCRETE ORDINATES METHOD El We begin our

consideration of numerical schemes for solving transport equations by

examining the method of discrete ordinates5 (sometimes known as the SN

method) in which the angular variable is discretized into a small number of

directions or rays, then the particle transport equation is written for each

ray, including various coupling terms describing ray-to-ray transfer. This

method is certainly the most popular as well as one of the most direct and

powerful approaches to numerical transport calculations.

We can summarize the major steps of the discrete ordinates approach to

solving Eq. 8.1 as follows:

i We begin by choosing a set of M discrete directions or rays QM,

m=l,2,...,M and corresponding quadrature weights w,,w2,...,wM

(for numerical integrations over angle).

ii The transport equation (8.1) is now evaluated at each of the discrete

directions 82,":

L I

nm-v<p(r,nm)+2,¢(r,nm)=1 0 2 112mm,, f m’ Y3‘.(fl')q>(r, 0')

+s(r,t‘2,,,) (8.2)

iii The integralAterms are evaluated as accurately as possible using the

directions {0",} and quadrature weights {wm} chosen in step i. For

example, the angular moments of the flux in Eq. 8.2 may be ap-

proximated as follows:

qvmzfdfi MQWUZQ); 2 wmmflmmm)

m=l

iv A discrete spatial mesh is chosen, and finite difference representa-

tions of derivative terms are introduced for this mesh at the discrete

spatial and angular points l'i, i=l,2,...,I and 0m, m=l,2,...,M.

This results in a system of algebraic equations for the angular fluxes

at the discrete mesh points {r,-} and {52",}. If we define <p,£I = <p(r,~,flm)

and <p=col(<pl',<p,2,...,q>,i,,...,<p,{,), this system of equations may be

expressed in matrix form as follows:

Aq>=B<p+S

where A represents the discretized streaming-collision operator, {AIM-V

+2,(r),B is the discretized form of the inscatter term, and S is the

discretized source term.

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

6
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



THE DISCRETE ORDINATES METHOD 1:] 423

v If we rearrange A so that it is a lower triangular matrix

O

A—)

(this is always possible and corresponds physically to solving in the

direction of neutron motion), we can easily invert A to arrive at an

iterative solution method

<p(")=A _'B<p("_')+A "S (8.3)

Of course, the iterative scheme represented by Eq. 8.3 is similar to the

collision (or Neumann) iteration we studied in Section 2.2.2. We

continue this iteration process until some suitable convergence criter-

ion is met.

The foregoing steps constitute an outline of the method of ‘discrete

ordinates. Although this approach is apparently quite straightforward in

principle, seyeral complications arise in practice.6 The choice of discrete

directions {12",} and {w,,,} is not obvious in many cases—~particularly in

multidimensional geometries. Even for one-dimensional geometries, the

choice of an optimum set is frequently problem dependent. Moreover, the

discretization of the streaming operator in curvilinear geometries involves

angular derivatives to account for ray-to-ray transfer or “angular redistri-

bution.” If not treated carefully, the resulting finite difference scheme may

be nonconservative insofar as it will fail to conserve particle number.

The discretization scheme may give rise to other deleterious numerical

effects such as negative fluxes or flux oscillations. One particularly serious

malady is the “ray effect” in which the finite number of rays used in a

discrete ordinates representation may “miss” localized sources or ab-

sorbers. Measures must be taken to alleviate or eliminate this effect when it

occurs.

Because the size of transport calculations implies large computing times,

acceleration methods (e.g., coarse mesh rebalancing) are employed to

speed up the convergence of the collision iteration represented by Eq. 8.3.

This is especially true in weakly absorbingsystems (c~l).
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424 El NUMERICAL METHODS IN TRANSPORT THEORY

The following sections, which discuss in more detail the steps in a

discrete ordinates calculation. examine each of these complications.

8.1.1 [1 Selection of Discrete Ordinates Quadrature Sets I; This section

covers the criteria for choosing the discrete directions {9",} and corre-

sponding weights {wm}. Because the situations are somewhat different, the

discussion of quadrature sets for one-angle (e.g., one-dimensional slab or

spherical) geometries is separated from the discussion for two-angle (one-

dimensional cylindrical or multidimensional) geometries.

One-Angle Quadrature Sets 1] For one-dimensional plane or spherical

geometries, the angular flux depends only on the direction cosine p.=fl'éx

or 11= Il-é,. For these cases, the angular integrals become simply

<P/...(r)= [m Yif.(Q)<P(r,Ql—>( 21,1,‘ )l/ZZWIjIIdMPKMPUJL) (8.4)

and the selection of discrete directions and weights over the unit sphere is

reduced to the interval — 1 < p1< 1. Denoting the discrete directions and

weights as { 11m} and {wm}, respectively, we can replace the integral Eq. 8.4

by the quadrature formula

fildllpifllhdxrll); 2 mutation.)

m=l

Our goal is to determine suitable quadrature sets { ,aWwm}.

The following criteria should be satisfied by the selected quadrature set

{ “m, wm}'7_9

i Projection invariance. The quadrature set should be invariant with

respect to allowable orientations of the physical domain. For one-dimen-

sional slab geometry with azimuthal (rotation about the x-axis) symmetry,

the only change in geometric orientation allowable is reflection (x—>—x).

Any other orientation would change the symmetry and necessitate a

different coordinate system. But reflection about x=0 implies that if

11, = cos 0, is chosen, the nj =COS(7T — 0,) = — 11., must also be included. There-

fore the discrete directions {11m} should be symmetric about p.=0. Physi-

cally, this corresponds to treating particles traveling from left to right

( {1. >0) the same as particles traveling from right to left ( [I <0).

Projection invariance is desirable if one has no a priori knowledge

concerning the solution. For radiation shielding calculations, however, one
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THE DISCRETE ORDINATES METHOD ‘ E] 425

may know that the angular flux is forward peaked (concentrated near

[1. = l) for large distances into the shield. In this case one may wish to tailor

a nonsymmetric quadrature set with several points clustered near p.= + l.l0

ii Positivity 0f the scalar flux. The zeroth moment of the angular flux,

the scalar flux

+1 M

¢<x)=2wf_l dWPU’MEz'" 2 Wm<P(X,tLm)

m=l

is always positive. Choosing the wm >0 will ensure this property as long as

the angular flux is positive.

iii Accurate evaluation of angular integrals. The various moments of the

flux (e.g., Eq. 8.4) and source should be evaluated accurately with a

minimum of directions and weights.

In early discrete ordinates schemes it was common to use trapezoidal

quadrature in which it was assumed that the angular flux varied linearly

between any two quadrature points u,-:5

lL_tuj—l

lH—lLj—l

l-H—H

lH—P‘j—l

‘P(X,H)=( )<P(X,tt,-)+( )qvU’m-l), ttflwwj

This particular scheme in which the angular flux was represented by N

straight-line segments was referred to as the SN method. Such a nomencla-

ture has persisted to the present day, and discrete ordinates schemes are

still occasionally referred to as SN methods—even though the quadrature

scheme may bear no resemblance to the earlier straight-line interpolation.

Perhaps the most popular quadrature set for one-dimensional geometries

is the Gaussian quadrature set. It is well known that Gaussian quadrature

will integrate exactly a polynomial of a given degree with the least number

of quadrature points (and weights). In particular, M point Gaussian

quadrature will exactly integrate a polynomial of degree 2M — 1. Since the

various angular integrals are moments of Legendre polynomials (see Eq.

8.1), the use of Gaussian quadrature points and weights would seem to be

the optimum choice. Interestingly enough, Gaussian quadrature sets also

satisfy criteria i and ii above; that is, the { pm} are symmetric about ,u=0,

and the {wm} are‘all positive.

Table 8.1 contains standard Gaussian quadrature sets for several choices I

of the number of directions (weights) M. This table gives only quadrature

sets for even M (i.e., SZ,S4, etc.), since the Gaussian sets for odd M all

have a quadrature point at p.=0. In slab geometry the angular flux may be

discontinuous at p.=0; therefore we might expect evaluating the flux at
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Table 8.1 [1 Gaussian Quadrature Sets“

#1‘ wt

n = 2

0.57735 02691 89626 1.00000 00000 00000

rt = 4

0.33998 10435 84856 0.65214 51548 62546

0.861 13 631 15 94053 0.34785 48451 37454

n = 6

0.23 861 91860 83197 0.46791 39345 72691

0.66120 93864 66265 0.36076 15730 48139

0.93246 95142 03152 0.17132 44923 79170

n = 8

0.18343 46424 95650 0.36268 37833 78362

0.52553 24099 16329 0.31370 66458 77887

0.79666 64774 13627 0.22238 10344 53374

0.96028 98564 97536 0.10122 85362 90376

n = 10

0.14887 43389 81631 0.29552 42247 14753

0.43339 53941 29247 0.26926 67193 09996

0.67940 95682 99024 0.21908 63625 15982

0.86506 33666 88985 0.14945 13491 50581

0.97390 65285 17172 0.06667 13443 08688

n = 12

0. 12523 34085 1 1469 0.24914 70458 13403

0.36783 14989 98180 0.23349 25365 38355

0.58731 79542 86617 0.20316 74267 23066

0.76990 26741 94305 0. 16007 83285 43346

0.9041 1 72563 70475 0.10693 93259 95318

0.98156 06342 46719 0.04717 53363 86512

n = 16

0.09501 25098 37637 0.18945 06104 55068

0.28160 35507 79258 0.18260 34150 44923

0.45801 67776 57227 0.16915 65193 95002

0.61787 62444 02643 0.14959 59888 16576

0.75540 44083 55003 0.12462 89712 55533

0.86563 12023 87831 0.09515 85116 82492

0.94457 50230 73232 0.06225 35239 38647

0.98940 09349 91649 0.02715 24594 1 1754

n

"Weights are normalized to f f1dn= 2 w,.=2.

i=1

426 El

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



THE DISCRETE ORDINATES METHOD [II 427

.">€ , \"

0 oré‘ 9.0“ v“

Fig. 8.1 [1 S4 (or P4) quadrature set: u3= —p.2=.33998,u4= —p.|=.86ll4,w|=

w4= .34785, W; = W; = .65215.

u=0 to lead to numerical difficulties. In addition, since the angular flux at

p.=0 is neither incoming nor outgoing, there would be some questions

about the correct application of boundary conditions.

The possibility of a discontinuity in the angular flux at [1:0 points out

an apparent inconsistency, since Gaussian quadrature implicitly assumes

that the integrand is continuous over the entire interval. But if the flux is

discontinuous at “=0, the result of an integration by way of Gaussian

quadrature could be significantly in error. ‘In this case the analytical

procedures for performing an integral with a discontinuous integrand (i.e.,

splitting up the integral into two or more separate integrals) suggests a

better approach. One can split up the angular range into two parts,

— l < u<0 and 0<u< l, and perform Gaussian quadrature separately

over each half-range. This approach, known as the double PN methodll in

discrete ordinates (after a similar method in the spherical harmonics or PN

method—see Section 4.2.2) is used frequently for one dimensional slab

problems. An example of the S4 quadrature set is given in Figure 8.1. (See

also Problem 8.8.)

Two Angle Quadrature Sets CI The choice of discrete directions {QM} and

weights {w,,,} is complicated somewhat when two angles are necessary to

specify a given direction S2,". In the most general situation, we must

consider the entire unit sphere of directions (Figure 8.2). It is convenient to

associate the weights wm with an area on the unit sphere associated with

the direction (2,". Such an “area” method derives sets of discrete directions
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428 l] NUMERICAL METHODS IN TRANSPORT THEORY

2

Fig. 8.2 1:] Directions defined on the unit sphere.

{12m} and weights { w,,,} by representing the weights as explicit areas on the

unit sphere and using projection invariance.l2 We consider briefly the

restrictions placed on the set of directions and weights because of projec-

tion invariance, but further discussion of direction sets for two-angle

applications must be sought in the references.

Let us consider a three-dimensional Cartesian geometry (see Figure 8.3),

assuming no advance knowledge of the angular flux solution within the

block. In this case our choice of the discrete directions {Sim} should be

independent of the labeling of the three axes. That is, we have no a priori

reason to treat particles traveling in the + z-direction any differently from

particles traveling in the —z- or :x- or :y-directions. Therefore the

2

"(Dj—

./'

/

/ (>11

x/ A)’

Fig. 8.3 1:1 Spatial mesh cell in Cartesian geometry.
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THE DISCRETE ORDINATES METHOD El 429

angular direction set should be invariant under arbitrary 90° rotations

(x to y, y to —2, etc.) about the coordinate axes, and 180° reflections

about the xy, xz, or yz planes. This implies that each octant of the unit

sphere is similar, therefore we need consider only one octant.8

Let us now denote the direction cosines with respect to the x, y, and z

axes as u, 1], and g, respectively, and assume that we have chosen a

direction set {9",} that satisfies the projection invariance restrictions

discussed above. If we denote the direction 9m with the direction cosine

triplet (,t,,,,1,,,,,§,,,), then since Q," is a unit vector, we must have p3, +173I +

£3, = 1. If we collect the set of u’s for all the SZm’s (some u’s may be repeated

several times) and order them in some manner (e.g., — l <11] <u2< ~ - - <

11” < 1), call this set { um}, and do the same for the n’s and the 5s, we must

arrive at identical sets {um}={nm}={§m} because the x, y, and z axes

must not be distinguishable among one another with respect to the

direction set {52",}. Let us denote the unique set of direction cosines as

{am}. The reflection property implies that the direction cosine set {am} is

symmetric about a = 0. Apparently, then, we need only choose

a|,a2,...,aM/2 to specify the direction cosines along all the coordinate

axes, where we have denoted the positive direction cosines by

a|,a2,...,aM/2. However, we learn shortly that there is actually only one

degree of freedom, namely the choice of 01,. Choosing a1 is sufficient to

specify 1x2, a3,...,aM /2 regardless of the number of direction cosines being

used. These, in turn, will determine all the direction cosines.

TheAsymmetric distribution of direction cosines forces the discrete direc-

tions 9m to lie on latitudes (i.e., loci of constant it, n, or E) on the unit

sphere. This may be seen schematically in Figure 8.4, where one octant of

the unit sphere is shown.‘The arrangement of points on the octant must be

invariant under 120° rotations of the octant, and this corresponds to a

rotation of one axis into the other. If the points were not arranged on

latitudes, this condition would not be satisfied.

Let us now demonstrate that the specification of one direction cosine a1

uniquely determines all direction cosines if projection invariance is satis-

fied.‘2 Assume that we are at a discrete direction SZa=(p.,-,11j,£k), and we

traverse along the u,- latitude in the direction of increasing 1] latitude to the

next discrete direction 82b. By hypothesis, we are at u,- and 11]-+ 1, and clearly

the 5 value must be £k_, because both latitudes cannot increase (or

decrease) while the other latitude is constant. Cpnsideration of Figure 8.4

may aid in visualizing this argument. Therefore S2,, =(p.,-,11j+ ,,£k_ I). But we

have noted the equivalence of the sets {,it,,,} = {17",} = {g,,,} = {am}. There-

fore Qa=(a,-,a-,ak) and Slb=(ai,aj+l,ak_l). Furthermore, the restriction

that 2+ 2+12=1' l‘

p. 11 £ imp 1es that

2 2 2_ 2 2 2 _'

a,-+aj+ak—l, a,-+aj+l+ak_l—l
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430 U NUMERICAL METHODS IN TRANSPORT THEORY

E

11

Fig. 8.4 [1 Symmetric point arrangement on one octant of unit sphere.

Subtracting these two equations, we find

°9~2+1—%~2=<!Z"ai-1 (8.5)

Since i, j, and k were arbitrary, Eq. 8.5 implies that

a? = a,-2_ l + C

for all i, or

ai2=01|2+C(i—l) (8.6)

But if we have M direction cosines along each axis, there is a direction (2,,

corresponding to (a|,a,,aM/2) because there are M / 2 points for or >0. This

implies

0112+ af+afwz=l (8.7)

Then if we combine Eq. 8.6 with Eq. 8.7, we can evaluate the constant C as

follows:

: 2(1-3113)

C M—2
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THE DISCRETE ORDINATES METHOD El 431

Thus the specification of ozl determines the remaining 011-, j=2,...,M / 2.

We can tailor the points to be clustered close to a =0 by choosing a] large

(< l / V3 ) or clustered near the poles at = i l by choosing 011 to be small.

Projection invariance also forces the weights to be symmetric with

respect to rotations and reflections. Instead of discussing this issue further,

however, we direct the interested reader to more detailed references on this

subjecL'z'13 From a more practical point of view, it should be noted that a

variety of quadrature sets are usually supplied with the more popular

discrete ordinates transport computer codes.

8.1.2 El Derivation and Solution of the Discretized Equations [1 The

previous sections have discussed the derivation of the discrete ordinates

equations from the transport equation and have considered the choice of

quadrature sets {flnvwm} for one- and multidimensional geometries. We

are now in a position to solve the resultant system of discrete ordinates

equations, assuming that we have chosen a suitable set of discrete direc-

tions and weights. We must discretize the remaining variables in this

system of coupled partial differential equations (i.e., the discrete ordinates

equations) to arrive at an equivalent set of algebraic equations, which can

then be solved on a digital computer.

To simplify this discussion, we assume isotropic scattering (for the

present) so that the discrete ordinates equations can be written as

A A A M A A

KIM-Wu, Q...) + 2.(rhivfi’fl...)=(471)_‘2.(r) El w.<P(r, 9..) + s(n9...)

form=l,2,...,M (8.8)

We first consider the simple case of one-dimensional plane geometries,

since many of the principles illustrated in connection with this application

hold for more general geometries.

One-Dimensional Plane Geometry [I For the case of one-dimensional slab

geometry with azimuthal symmetry (see Figure 8.5) the transport equation

becomes

8 +1 I ,

ia—f +2.(x)<r(x,i>= lamfq d“ was )+s(x,11)

and the corresponding discrete ordinates equations are

d M

Mic-WWI...) +21(X)‘P(x11lm) = $.00 21 W..(P(X,1L..)+S(X,um),

m=l,2,...,M (8.9)
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432 [:1 NUMERICAL METHODS IN TRANSPORT THEORY

Fig. 8.5 [I] One-dimensional slab geometry.

A variety of boundary conditions may be applied to the left and right sides

of the slab. For purposes of illustration, we assume a reflecting boundary

at x=0 and a vacuum boundary at x=a. Table 8.2 contains the one-

dimensional versions of the other standard boundary conditions, which

may be used with only minor modifications to the following discussion.

The discretized equations are derived by applying finite difference

techniques directly to Eq. 8.9. The next section reveals that such a direct

application of finite difference methods to the transport equation in

curvilinear geometries may lead to a nonconservative difference scheme in

that the resultant finite difference equations may not conserve the total

number of particles in a computational cell. In such cases it is advisable to

derive the discretized equations using a particle balance argument for each

mesh cell (similar in spirit to the original derivation of the transport

equation in Chapter 1). This approach is illustrated later for both one-

dimensional spherical geometry and general two-dimensional geometries.

To proceed with the direct discretization of Eq. 8.9, we introduce a

spatial mesh x,,x2,...,x,, where x,- is the midpoint of the ith mesh cell (see

Figure 8.6). The boundaries of the ith cell, which also coincide with any

material boundaries, are labeled xi: 2. Equation 8.9 is then approximated

for each mesh cell with a cell-centered finite difference expression for the

derivative term umdtp/dx and cell-averaged expressions for the remaining

terms

“m (P(Xi+1/2’llm)_ ‘P(xi-1/2,l1m)

xi+I/2_xi—l/2

)+Zt(xi)(p(xiip'm)

n=l

M

=%2.(X,-) 2 wn<P(xvlLn)+S(X,-,#m)’ z ...,
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THE DISCRETE ORDINATES lVIETHOD 1:1 433

Table 8.2 [:1 Discrete Ordinate Boundary Conditions for

One-Dimensional Plane Geometry

Vacuum

M M

,',/2=0, m>7;<p,f.+'/2=0, m<—2—

Inhomogeneous

M M

.fi=f... m > 7 ; w'” =1"... m < 7

Reflecting (a = 1) or albedo

M

M

<P,L/2=a¢1/3m+h m>7wi+m=aq>h+lhib rm 7

Periodic

M M

(pL/2=q)'£l+1/2, m>T; ’L+I/2=(p'll/2, mg T

White

M/2 M

E w. 1”». 2 WMPJH/ZP-n

|/2= "=1 I+1/2= "=M/2H M

"' M/2 ' '"> 2 r m M , m< 2

2 mu. 2 Wm

,,= n=M/2+1

or in an obvious notation

i+1/2_ i—1/2 M

m m . . ‘ I. . ._ .

um —Ax +21<P,1.=52. 2 w,.<P.§+S,i.=q.i. (8-10)

1' n=1

Notice that Eq. 8.10 represents IM equations in (21+ 1)M unknowns.

To reduce the number of unknowns, we relate the cell-centered fluxes (pf),

to the cell-edged fluxes (1);,i '/2 by a simple arithmetic mean expression

(Pi+l/2+(p,£I—l/2

m

WFT (8-11)

This relation is the one-dimensional version of the well known “diamond

N2 = 0 X3}: x5]: x,-_1/2 Xi+1/2 xi+112 = .1

| A 1 A | _ 1) 1 A l )1 - J

\\ \1

v j v 1

x1 I x2 X3 I x,- x‘

Fig. 8.6 [1 Spatial mesh for discretization of discrete ordinates equations in

plane geometry.
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434 El NUMERICAL METHODS IN TRANSPORT THEORY

difference” scheme.6 If we now substitute Eq. 8.11 into Eq. 8.10, we arrive

3.1

i+1/2_

i—l/Z i+l/2 i—1/2

(Pm (P ,- (Pm +(pm _ i

p.,,,( Ax )+Z,(—2 )—q,,l (8.12)

i

We have chosen not to express a‘, in terms of the cell-edged fluxes because

the iterative solution method Eq. 8.3 proceeds by assuming that q},I is

known, then updating this quantity with each iteration.

The set of equations (8.12) now contains (1+ l)M unknowns, since we

have utilized Eq. 8.11 to eliminate 1M unknowns. The boundary condi-

tions on the M / 2 incoming fluxes at each boundary provide the additional

M equations to complete the set and allow a solution. Equation 8.12 can

be solved for either (p:r l/2 or 4,;— 1/2

i+'/2= i—l/2+__;i'__ (8.13)

"' 1+2;Ax,/2,.m '" Hm/Axiwi/2

<P"_'”= i+l/2+ (8.14)

"' lama/2,," m urn/AME,”

It is crucial to choose the proper equation (8.13) or (8.14) as the basis for

the iterative solution. This choice will be determined by the particular

direction p," being considered. If we note that boundary conditions are

imposed on the incoming boundaries, it is apparent that we should

advance the solution away from the incoming boundaries and in the

direction of neutron motion. That is, if we know the incoming flux at

x=a, qaf'” for p," <0, we are forced to use Eq. 8.14 because otherwise

Eq. 8.13 would yield wjlfl/z, which is not a valid flux. Similarly, if we

know the incoming fluxes at x=0,<p,1/2,um >0, we must use Eq. 8.13. In

summary, then, we would choose Eq. 8.13 for pm>0 and Eq. 8.14 for

pm < 0.

These arguments remain valid for the case of implicit boundary condi-

tions (e.g., reflecting or periodic boundary conditions). For example, if we

had specified a reflecting boundary condition at x=0 and an inhomoge-

neous boundary condition at x= a, we would begin with the known fluxes

at x = a,<p,f,+ '/ 241.," < 0, and progress through the slab to x =0. At this point

we would have computed the outgoing flux at x =0, qil/ 2, 1L," <0. We could

then impose the reflecting boundary condition (pl/E,” I = (pl/2 and use Eq.

8.14 to proceed back across the slab toward x=a. This scheme is repre-

sented schematically in Figure 8.7.
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u

3 _ 2

‘Fr/2' for “a —> >—i->T >—#

4 = 1

‘01/2 W112 . 1 z

Incoming fluxes (pm/2. WW2

*l

<42.

.5

xv: ‘512 ‘512 *7/11 ‘912 Xu/z x13/2

Fig. 8.7 [1 Solution strategy for plane geometry.

If there are implicit boundary conditions on both sides, a less direct

approach must be taken. One can iterate on a guessed boundary flux,

which is then used to calculate the interior fluxes. Other procedures may

also be used for this case.9 However the significant point is that we still use

Eq. 8.13 for lu,,,>0 and Eq. 8.14 for pm<0, regardless of the choice of

boundary conditions.

This particular choice is also required to ensure the numerical stability

of the solution algorithm. This may be illustrated for the simple case of a

homogeneous slab with constant mesh spacing, zero source, and a known

incoming flux at x=0. In this case (1),;+ 1” can be expressed in terms of the

boundary flux 011/ 2 using Eq. 8.13:

(pr+1/2=( l'_21A"/2Fm)i 1/2

"' l+Z,Ax/2p.m "'

Now if there is some error e in the initial flux, say (111/ 2=(p,L/ 2+6, then

clearly the error in the solution (1),‘: V2 is damped because for )1," >0,

8i:

1— 2,Ax/2p.m i

1+2,Ax /2,.,,, 6
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436 [l NUMERICAL METHODS IN TRANSPORT THEORY

However if we had chosen Eq. 8.14 to compute tp'f'fl, the resultant error

would have been m

_ l+2,AX/2p.m "

6"— 1-2,Ax/2,i,,, 8

In this case the initial error in the solution would have been amplified by

the choice of the wrong difference scheme; that is, the difference scheme

would be unstable. Note that even if the initial solution were known

exactly, a computer would generate some roundoff error for its representa-

tion of the initial solution; therefore there would be an initial disturbance

in the solution that could easily be magnified by an unstable scheme,

destroying the calculation.

Another desirable property of such difference schemes is positivity, an

attribute of a difference scheme that results in a positive solution for any

positive source. Since the analytical angular flux is always positive, it is

desirable to ensure (if possible) that the numerical approximation is also

positive. To be more explicit, let us consider the positivity of the diamond

difference scheme represented by Eqs. 8.13 and 8.14. Examination of Eq.

8.13 indicates that for q; >0 and <p,if'/2>0, the condition

ZflAx,

2n”.

< 1 (8.15)

will guarantee that qa,f,+'/2>0. (Note that we have it," >0 when using Eq.

8.13.) In other words, the diamond difference scheme in one-dimensional

plane geometry is positive if Eq. 8.15 is satisfied. In practice, however, it is

difficult to meet this constraint because the quadrature point pm with

smallest magnitude may be quite close to zero. By way of example, for S [6

quadrature the smallest direction cosine is p.m=0.095 which, when sub-

stituted into Eq. 8.15, implies a mesh spacing Ax,- < 0.2 / Ef—that is, a mesh

spacing less than one-fifth of a mean free path. This rather severe restric-

tion for the spatial mesh clearly could result in significant increases in

computing effort. Furthermore, in two-dimensional geometries it can be

shown that the diamond difference scheme cannot be guaranteed to be

positive.‘5 As a consequence of this feature, most discrete ordinates codes

have some form of “negative flux fixup” prescription to treat negative

fluxes if they appear during a calculation. These “fixup” schemes all

involve local modifications of the difference schemes whenever a negative

flux is encountered.

The simplest such fixup scheme merely sets the offending flux equal to

zero. This may seem to be somewhat artificial, but actually it should be
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THE DISCRETE ORDINATES METHOD l:l 437

kept in mind that a zero flux is probably the best approximation to the

actual solution, since the computed negative flux is based on the accurate

diamond difference scheme.

An alternative fixup procedure involves switching to a positive dif-

ference scheme whenever negative fluxes are encountered. To be more

explicit, let us generalize the diamond difference relations (8.11) that

express the cell-centered flux in terms of the cell-edged fluxes by including

a weighting factor 01:"

<P,i.=aqv,‘..+'/Z+(l—a)<p.if'”, 11m>0

<P.i.=a<1>.i._'”+(l—a)<1>.i.+'/2, Mm<o (8'16)

Notice here that choosing a =% results in the diamond difference relations,

Eq. 8.11.

Now let us assume that q,f,=0 and that we are considering the case

11.," >0. If we substitute Eq. 8.16 into Eq. 8.10 and solve for (p;+ '/2, we find

(pin/2: l_(l_a)2iAxi/F‘m (p1-1/2

m l+a2','Ax,/p.m m

Clearly, <p,£,+ '/2 >0 if a = l and (p;— '/2 > 0. Therefore the weighted diamond

difference relations are strictly positive for a=1. This “step function”

scheme may be substituted for the diamond difference scheme whenever

q): '/2 is negative. Once a positive of V2 is obtained, one can switch back

to the usual diamond difference scheme (a = é). This prescription to avoid

negative fluxes is included as an option in discrete ordinates computer

codes such as ANISN.l5 There is a disadvantage, however, in that the

resulting difference scheme is no longer of second order accuracy in the

mesh spacing. Therefore we must sacrifice accuracy for positivity—which

is a frequent tradeoff in the application of discrete ordinates methods.

We have explicitly solved the resulting finite difference relations Eqs.

8.13 and 8.14 in the direction of neutron motion. The net effect of this

prescription is that the matrix of coefficients A has been rearranged into a

lower triangular form and simply inverted by progressing through the

space angle mesh. But we have not yet addressed the fact that the source

term q; contains the unknown flux (pf,I in the inscatter term as indicated by

Eq. 8.10. As we noted earlier, however, an iterative strategy is used to

update the inscatter and source terms as follows:

i Estimate the initial source qifol.

ii Use Eqs. 8.13 and 8.14 as appropriate to solve for the first flux iterate

of)” for all i and m.
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438 [:1 NUMERICAL METHODS IN TRANSPORT THEORY

iii Reconstruct the source terms for all i,m as

M

.l I . .l .

‘m( )-' 52', 2 W..<P'.l H's...’

n=l

iv Repeat step ii and compute (1:52) for all i,m.

(This procedure can readily be generalized to include anisotropic scattering

or implicit source terms such as those due to fission.)

In practice one accumulates the inscattering and source terms as the

computation advances through the mesh. In this way the angular flux need

not be stored except for the components necessary for the calculation in an

adjacent mesh cell.

In summary, we have described in some detail the derivation and

solution of the discretized discrete ordinates equations in one-dimensional

slab geometry. But several of the principles discussed in this section are

also applicable to more general geometries: the solution of the discretized

equations in the direction of particle motion is a general requirement for

numerical stability and is equivalent to arranging the equations in such a

way that the coefficient matrix becomes lower triangular. Furthermore, the

assurance of positivity of a difference scheme may place undue restrictions

on the mesh spacing or may force one to sacrifice accuracy to obtain

positivity. Finally, the method of source iterations is necessary to obtain a

lower triangular coefficient matrix, which, in turn, is necessary for an

efficient solution algorithm.

One-Dimensional Spherical Geometry El Let us now consider a spherically

symmetric problem in which we can describe the angular dependence of

the flux by one variable, the direction cosine with respect to the r-axis (see

Figure 8.8). We have noted that a direct application of finite difference

approximations can lead to nonconservative difference equations. There-

fore we rederive the finite difference equations for one-dimensional spheri-

cal geometry by implementing particle balance conditions for each mesh

cell. It can be shown that in the limit of infinitesimal mesh cells, the

resulting finite difference equations become identical with a particular

form of the transport equation in one-dimensional spherical geometries.

This equation, known as the “conservative form” of the transport equa-

tion, has the following attractive feature: it leads to conservative finite

difference equations when subjected to the standard difference approxima-

tions. We conclude this section by discussing how such difference equa-

tions can be solved.
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Z

Fig. 8.8 [I Spherical geometry.

Let us begin by considering a spherical mesh cell of thickness Ari,

volume A V,-, and centered at radius r,-. The inner and outer radii of the cell

are r,+1 /2 and r,-_l/2, respectively. We also need an angular mesh cell

centered at [Lm with “volume” Ayn, which can be identified as simply the

quadrature weight w"I =Aum. The angular volume is necessary because we

must account for the phenomenon of ray-to-ray transfer of particles

(so-called angular redistribution). This phenomenon occurs because the

angular coordinate system is defined relative to the radius vector r;

therefore it is not fixed in space. That is, a particle that is streamipg along

a straight-line trajectory will have different direction vectors (2 in the

angular coordinate system defined with respect to r. This tendency of a

particle to experience a change in its direction cosine during streaming is

illustrated in Figure 8.9. This will give rise to a transfer of particles

between “adjacent” angular mesh cells.

We now equate particle gain to losses in the phase space volume

AViAitm. More explicitly, the net gain of neutrons in AViAp," due to

streaming across the spatial edges at riil/2 is easily computed as

Ar,-

_ A _ Ar,- 2

ga1n= —flm-e, q>(r,-+ 7,p.m)4w(ri+ 7)

(note that this term may be negative, thereby representing a loss). The gain
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440 [:1 NUMERICAL METHODS IN TRANSPORT THEORY

Particle

trajectory

\ A A

‘A t:ostl,=fl-a,.1

Fig. 8.9 E1 Change in direction cosine during particle streaming in curvilinear

coordinate system.

due to neutrons that suffer a scattering collision in AV,- and end up in An,"

can be obtained by adding up all the scattering collisions (including

self-scatter):

M

gain= E [<P(r.-,tL..)Au,.] [E.(r.-)P(#..—>ti...)AtLm]

n=l

where P( p.,,—>pm)/Aum is the probability that the scattering collision will

transfer a particle from direction an to Apm. The loss due to neutrons in

All," that suffer any collision in A V,- is just '

1°55 = <P(r.-, P‘m)Ap‘mZ!(ri)4wri2Ari

and the gain due to external sources is

gain = s(ri, y.,,|)4'rrr,2AriAp.m

Finally we turn to the net gain of particles in AV,- due to angular

redistribution of particles from Ajtm_, to All," across a,,,_ V2 and from Aam

to A am+l across um, I /2. (Here the directions are ordered so that redistribu-

tion takes place only in the direction of increasing m.) To compute this

term, we define effective areas amfl/2 at umtl/Z, which, when multiplied

by (p(r,-45,111”), result in the net number of particles leaving (—) or

entering (+) AV,Ap.,,,.7’8 (These “areas” are evaluated below.) The net gain
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term due to angular redistribution can then be written as

Aum 4pm

(I) riHU‘rn—T am—l/2_q) rHium+T am+l/2

If we now equate the loss and gain terms, we find

4 A ( +Ari ) +Arl- 2 _Ar,- Ar,- 2

wf'l‘m p'm (P ri 2 hum (ri 2 ) (p(ri 7’|um)(ri_—2-)

Aum Aum

+<P rvllm+T am+l/2_(p FvHm—T am—l/Z

+ El(ri)4wrizAriAau‘mq)(ri’ Fm)

M

= 2 (p(ri’p'n)A|u’nEs(ri)P( I'Ln'_)“m)Al‘Lm47rri2Ari + s(ri’ Hm)4”ri2AriA”'m

n=l

(817)

For convenience, we assume isotropic scattering P(p.n—>p.m)=%, then

divide Eq. 8.17 by 41rr,-2Ar,-A;1m to obtain

h @("i 2 ’”'m ri <17("1' 2 ’”‘m)(ri 2 )

ri2 Ari

Anm Aum

l (P ritp‘m-l-T am+l/2_q) ri’f'Lnt—T c‘m—l/Z

+

4'irrizAri All,"

M

+ Ei(ri)¢(rvllm) : ii“) 2 @(rp 1%)A1Ln + 3(rvP-m) (8-18)

n=l

Equation 8.18 is the required finite difference equation, but we have still to

determine the otmil/2 terms. These angular area terms are evaluated by

considering the case of divergenceless flow in an infinite absorbing

medium with a constant source, that is,

. A S

Ea<p(r, Q) = s(r, S2) = 4—3
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442 I] NUMERICAL METHODS IN TRANSPORT THEORY

This yields a constant angular flux

A $0

<p(r,SZ)- 4W2 —constant

a

The numerical approximation to this case should also result in a constant

flux, and the finite difference expressions for the streaming operator

should vanish. If we apply Eq. 8.18 to this problem, we find

( +A~>¢< if

ri 2 r‘ 2 +( l )(am+l/2—am—l/2)=0

"i

A!" 41rri2Ari Al‘m

I

This can be rearranged as

or"1+ l/Z — am_ v2 = — pwApmiirrrl-Ari (8.19)

We now redefine the 0: terms as follows:

‘1m: l/2—)am: |/2(8"”|'Ari) _I

so that Eq. 8.19 can be rewritten as follows:

am+l/2—am—l/2= —#mAP-m

This redefinition of a is clearly allowed when we remember that a was

originally defined in terms of an equivalent “area,” and we are simply

normalizing this original definition for convenience.

With this definition of the a term, Eq. 8.18 becomes

Ari Ar,- 2_ _Ari ( _éfiy

W(7i+_2_’!‘m)(r1+7) @("i 74%) "i 2

r’? Ar,-

All," All,"

2 (p(ri’I‘Lm+T am+l/2—(p rihuM—T am—l/Z

+ _

(n) Au,"

M

+ E,(r.-)<P(r,-,nm) = i2“) 2] q>(r.-,#,.)Aun + s(mum) (820)

Notice that the angular redistribution can only take place in the direction
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of increasing ,1. That is, if a particle is streaming outward ( I.L>0), then as r

increases, ,u increases. Conversely, if the particle is streaming inward

( u<0), then as r decreases, it increases (becomes less negative). It should

be noted that there is no angular redistribution out of p.= +1 or into

p.= — 1. Therefore we should have zero areas for these limiting cases,

a, /2=aM +1 /2=0. The first condition, al/2=0 initiates the recursion for-

mula (amH/2—am_|/2= —p.,,,Aitm) and allows the calculation of the re-

maining (1 terms. If the {p.m} direction set is symmetric about p.=0, the

recursion formula will also result in 01M + I /2=0 if a 2=0.

If we define <p,',,:I/ZE<p(r,,umi‘Aum/2), the angular redistribution por-

tion of the discretized streaming operator in Eq. 8.18 can be written (using

the redefined or terms) as

'" r Ali».

i

' am _ ’£l_ am—

A,=2(‘P +|/2 +l/2 ‘P 1/2 1/2) (8.21)

If we multiply A}, by All," and sum over all m, we obtain

A,;A.“m=_ ((pr£|+l/2am+I/2—(Prh—I/Zam—l/Z)

M4:

2

r.

iM:

2 ,- i .

=7((pM+l/2aM+l/2_(pl/2a1/2)=0 1f aM+l/2=al/2=0

But this is essentially a statement that there is no net gain or loss of

particles due to angular redistribution. Therefore the foregoing difference

scheme for the angular redistribution term Eq. 8.21 is conservative.

We now demonstrate that in the limit of infinitesimal mesh cells (i.e.,

Ari—>0 and Ap,,,->0), the discretized equation (8.20) is indeed equivalent to

the analytical one-dimensional spherical transport equation.8 To show this,

we take the limit of each of the terms in Eq. 8.20 as Ar,.,Ap.m—>0:

r,+Ar,/2

lim( “m )r2<p(r,,i,,,)

Ar—>0 rizA r‘.

n-A'i/Z

l'm 12mg (r )A =12(r)f+‘d (r)

Apirmz Sri q) i’l'l'n “'n 2 S _l I“? ’f"_

n=l

If we note that a is a function of p. [i.e., oz,"+1 /2=a(um+Aum/2)], the
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444 l] NUMERICAL METHODS IN TRANSPORT THEORY

angular redistribution term becomes

pM-t-Apm/Z

2

r

)01( P)<P(’1,#) oil, (11¢)

lim (

sow—.0 rI-Air"I “PAM/2

To determine the continuous form of the a function, we take the limit of

(am+l/2_ am— l/2= _ p'mAp‘m) as to

But we have noted that there is no angular redistribution into p.= —l or

out of p.= +1. Hence a=0 for 11= :1, and we can evaluate c=%.

Therefore a =(l — 112)/2.

If we combine these results, we arrive at the desired limit of the

difference equations (8.20):

% §;(r2<1>)+%%[(1—112)<P]+E,(r)<1>(w)

= éamffl'dww'mmv (822)

which is referred to as the conservative form of the transport equation in

one-dimensional spherical geometry.9 As with the discretized case, we use

the term “conservative” to indicate that the angular redistribution term

vanishes when integrated over all angle:

_:ld11-:—-:—u[(1"112)¢(’1#)1=%(1_#2)<P(”l‘)i=0

The equivalence of the conservative form of the transport equation with a

finite difference equation based on particle conservation for each mesh cell

implies that the conservative form of the transport equation should be used
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if finite difference methods are to be applied directly. Application of

difference approximations to other forms of the transport equation in

curvilinear coordinate systems will lead to nonconservative difference

schemes.

Although we have already obtained a discretized form of the discrete

ordinates equations, it is instructive to rederive this form directly from the

conservative form of the transport equation (8.22) to illustrate this alterna-

tive approach. We assume that a quadrature set { nwwm} has been chosen

according to the criteria listed in Section 8.1.1. The corresponding discrete

ordinates equations become

% g [ r2¢(r,#...)] + l 81” [(1 — H2)<P(’r11)]+2r(')¢(r’llm)

l M

= 5m 2 national.) (813)

n=1

The boundary at r=0 is a symmetry boundary, and we therefore use a

reflecting boundary condition. This is not strictly correct because by

definition a particle exactly at r=0 will change discontinuously from

p= — l to p.= + 1.

To discretize Eq. 8.23, we introduce a spatial mesh similar to that used

for one-dimensional slab geometry (see Figure 8.10). Here the cell-edged

mesh points are labeled as nil/2 and are chosen to coincide with any

material boundaries that might be present. Since we must consider the

angular derivatives explicitly, we incorporate the quadrature set { am} into

an angular mesh structure, where the integral points um are the discrete

directions (see Figure 8.11). We use a centered difference expression for

'1/2 = 0 "3/2 '5/2 'i—1/2 'i+1/2 'l+1/2 = R

: = l 4 l _ 1 w : ‘l—o—l

'1 '2 '3 “ '1 1 'I

Fig. 8.10 El Spatial mesh structure.

Fur“ Ila/2 115/2 I-lm»1/2 Mimi/2 11M+1/2=1

: = 4, = l c ‘f fie " l c l ” - l

“1 “2 “a #4 “m n HM

Fig. 8.11 l] Angular mesh structure.
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446 El NUMERICAL METHODS IN TRANSPORT THEORY

the angular derivative

= (1 _f‘|'3|+l/2)(pm+l/2_(l _p‘3I—l/2)(p'"-l/2

ts. Am"

a _2

8M0 M40

where we define All," = p," + 1/2— p,,,_ V2. Hence the finite-differenced form

of the discrete ordinates equations (8.23) is

h 'i2+ I/2(pI£l+ V2 _ riz— v29’;— v2

2 Ar.

I" l

l

(l_l‘3|+1/2)‘P,i|+i/z_(l"Ihi-i/JWL-i/z ,- ,- ,-

+ ,Allm + Em" = 4..

(8.24)

where

. . M . ‘

q,1.=%2‘. 2 tniwnflln

n=l

If we compare Eq. 8.24 with our earlier discretized equation (8.20),

evidently we must identify

1‘him/2 Pita—12

am+l/2=T and ‘Xm—1/2=—2L

Subtracting these terms, we find

_ Ilin/z—HZI-i/z

am+l/2_am—l/2_ _ ‘——2'—

= _ (llm+l/2‘Hm-i/2)(llm+|/2+#m-l/2)

2

which is identical to the earlier recursion formula [if we assume um=

(um,l /2+ it,,,_, n) / 2]. Therefore the direct discretization of the conserva-

tive form of the transport equation in one-dimensional spherical geometry

yields the discretized equations based on conservation of particles for each

mesh cell.

To generalize these results, we introduce the following notation:

V, = volume of spatial mesh cell at r, = 4m,2 Ar,-

A,-._, 1/2 = area of cell edge at r,-: W = 4111,21,”

_ l—F'ZIiI/Z

am1|/2———2

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



THE DISCRETE ORDINATES METHOD 1:1 447

and express Eq. 8.24 in terms of these definitions as follows:

P'm(Ai+l/2(pr£|+l/2_Ai—1/2(pr£r_l/2)

V.

I

+ (Ai+|/2_Ai-i/z)(am+i/2<Ph+i/z—am-i/zqhit—l/z) +2,- ,~= ,-

(8.25)

This result applies to one-dimensional plane and cylindrical as well as

spherical geometries with the appropriate definitions for the V,-,A,~t V2, and

a,": In terms. Table 8.3 gives the specific values for these three one-dimen-

sional geometries.

Table 8.3 El Area and Volume Elements for Standard

One-Dimensional Geometries

Parameter Slab Spherical Cylindrical

Aiz-l/Z 1 4""311/2 2""2'11/2

V,~ Ax,- 4'rrr,-2Ar,- 21m Ar,-

We now turn to the solution of Eq. 8.24 for the space angle mesh

illustrated in Figure 8.12. As in the one-dimensional slab geometry prob-

lem, Eq. 8.24 contains too many unknowns for the number of equations

(31M+I+M unknowns, IM equations). Therefore we relate the cell-

centered fluxes to the cell-edged fluxes with the symmetric arithmetic

mean or diamond difference relations

. 1 . ._ . 1 - -

¢h=5(‘P,LH/2+‘Phm)’ ¢é=E(‘Ph+1/2+q’h—1/1) (8'26)

Equation 8.26 represents 21M equations that when added to the IM

equations and the M incoming boundary conditions above, is still in-

sufficient to determine the 31M +1 +M unknowns. The additional I

equations necessary to balance the number of unknowns may be obtained

by considering the “starting” direction 11.: —1 or [Ll/2. For this special

direction, which corresponds to streaming inward along a radius vector,

there is no angular redistribution. In this case, the transport equation
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FMHI: I

#M-i/z

l

i

# ltpmn/z

"Hm fi‘ii-mi T win/z

11m——-—-———t-"' )__4"' -t____.

Known 04,,l >0) 4 Known (u,,< O)

Hm—i/z I

Iv’ln-i/z

I

#3/2 I

441/: l

'11: '3/2 'i—1/2 '; 'i+1/2 'iwz

Fig. 8.12 1] Space angle mesh structure.

becomes

a +1 , ,

,L-£+E,(r)<v(r,u)=%zs(’)f_l d” (P(r’”)+s(r’#)

which is identical to the one-dimensional slab equation. Thus if we know

rp(R, — l), the inward radially directed flux at the surface of the sphere (i.e.,

(pf/+21”), we can solve for (pf/3'”, @723”, and so on, by using Eq. 8.14 with

p," = — 1. Therefore we can calculate the I fluxes along the special direction

1L|/2= — 1 just by specifying the incoming flux for this direction, thereby

finding the additional I equations necessary to reduce the number of

unknowns. At this point in the calculation we know (pf/2 for

i=§,%,...,1+§.

To proceed with the calculation, we note that for any angular “sweep”

m, the incoming angular redistribution flux is <p,£,_1/2, and this term is

known from the previous sweep. Therefore we can solve for q>,;,+1/2 using

Eq. 8.26

(pI:I+I/2=2q;!£I—(p!£I—l/2

I

Now we must determine the flux on the incoming spatial boundary. Aslir;

the plane geometry case, for um >0, (1),;— 1/2 is the incoming flux, and <p,‘,,+ /
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THE DISCRETE ORDINATES METHOD [:I 449

is the outgoing flux. Therefore for pm>0, we solve for qJ'H/z

m using Eq.

8.26

i+l/2

(p i—l/2

m

= 2w; — (Pm

These expressions can be used to eliminate <p,i,+ V2 and (#:l/z to solve Eq.

8.25 for of":

qvi. = aimi— ‘/2 + blAPL- 1/2 + CM; (8-27)

where [J.m >0, and the coefficients a‘ b‘ and 0,; are constants. For um <0,

4 I ' a I I

we eliminate (pk—W instead of <p,'"+'/2, and the resulting expression 18

<21} = aim? '/2+ bLwL- l/2 + qLqi. (3-28)

where the _a,1',, bl" and 0,1, are the same as in Eq. 8.27 if the angular

quadrature satisfies ,um =(p.m + W + p,,,_ l /2) / 2. (Note that this would not be

true for standard Gauss-Legendre quadrature sets.) Therefore we can

calculate the cell-centered flux (p;I from either Eq. 8.27 or Eq. 8.28, and the

outgoing flux ((pL‘Ll/Z or (PL—W) can be determined from Eq. 8.27. This

quantity is then used as the incoming flux for the next mesh cell.

The order of the progression through the space angle mesh in Figure

8.12 should now be evident. Remembering that all fluxes (pi, along m=§

have been computed, we start with the known incoming boundary flux

tp,” l/2=(p(R,1.il) and progress to the left computing (pl, and then the edge

fluxes tpjfl/z and (pi, +1 /2. After r=0 has been reached, the next angular

sweep (m=2) is begun. Once all (p;I for ‘um <0 have been determined, we

can use the reflecting boundary condition at r=0 to determine <p,'n/2=

(pi/Em“ for pm >0, and sweep back to the right for each pm. Figure 8.13

illustrates this procedure schematically.

8.1.3 [I Multidimensional Geometries III In the previous sections we

have discussed in some detail the application of the discrete ordinates

method to one-dimensional slab and spherical geometry problems. In the

slab application we found that the solution could be obtained easily by

solving along each discrete direction in the direction of particle motion.

This progression through the space angle mesh was particularly simple for

one-dimensional slab geometry because there was no coupling between

angular directions (no angular redistribution). The situation was a bit more

complicated for one-dimensional spherical geometry because the discrete

directions { um} were coupled by the angular redistribution term character-

istic of curvilinear geometries. But again the progression through the space
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Fig. 8.13 [I] Progression through typical spherical space angle mesh (1 =3,

M =4).

angle mesh was relatively simple once the calculation was suitably ini-

tiated.

As we might expect, the solution of the discrete ordinates equations

becomes considerably more complex in cylindrical or multidimensional

geometries. In these cases two angles are needed to specify 0m because

there is no longer azimuthal symmetry (in angular space). This complicates

both the discretization of the discrete ordinates equations and the algo-

rithm to solve the resultant system of algebraic equations.
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THE DISCRETE ORDINATES METHOD [1 451

For multidimensional geometries it is advisable to derive the finite

difference relations directly from a statement of particle conservation for

each mesh cell, rather than introducing finite difference approximations

directly into the transport equation.8 Therefore this section first derives the

finite difference equations applicable to an arbitrary two-dimensional

geometry. Although the coordinate system is labeled x—y, the discussion

also is applicable to r—0 and r—z geometries. The extension to three-

dimensional geometries, though computationally challenging, is based on

such principles of the two-dimensional application as the concept of

conservative difference relations for curvilinear geometries or progression

through the mesh in the direction of particle motion. Just as in the

numerical solution of the diffusion equation, one finds that the extension

from one- to two-dimensional problems is the significant conceptual step;

subsequent extensions from two to three dimensions generally result in

severe computational problems because of the sheer size of the system of

equations rather than any basic complications in finite difference methods

or numerical solution algorithms from the added dimension. Therefore we

do not consider the solution of three-dimensional transport problems

beyond mentioning that there does exist a discrete ordinates code,

THREETRAN,l6 which is capable of treating three-dimensional geometry.

The difference equations for a general two-dimensional geometry are

derived8 by considering the overall particle balance in the computational

mesh cell Vo- ASZm. We assume that a suitable set of discrete directions

{12",} and weights {wm} has been selected. The spatial mesh is char-

acterized by the notation indicated in Figure 8.14 where, as always, we

denote cell-centered quantities by integer indices and cell-edged quantities

with half-integer indices. Here the center of the spatial cell Vo- is (xoyj),

and the center of the angular cell is 12,". We define the “edges” of the

angular cell to be at 0,": v2 and as in the one-dimensional spherical case,

xi+112

Fig. 8.14 [1 Spatial mesh structure for two-dimensional geometry.
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452 1:] NUMERICAL METHODS IN TRANSPORT THEORY

the “areas” of these edges are denoted by a,": I ,2. If there are two

coordinates with curvature, we define additional areas Emil/2. We in-

troduce ( 15,011,") as the direction cosine pair with respect to the x—y axes

(or r—0 or r—z), nmzflmréx arid nmzflmréy. Using the conventional index

notation [e.g., (pm Eq>(x,-,yj,9m)], we can now write down the particle

balance equation for the mesh cell Vijwm. First note that the total number

of particles in All about $2 crossing an area A at position r per second is

<p(r,Q)Q-nASZA, where is is the normal to the area A at r, and a positive

sign indicates a net number crossing in the same direction as it. Therefore

the net number of particles leaving V,j across the area A,+1 /2 J is just

,1,+'/ 2";1,,,w,,,A, H )2 J- (where we have noted vvm=AS2m), whereas the net

number leaving Vij- across A,_|/2J- is —(p,;,_'/ 2*1)11,,,w,,,A,_l /2 J. Similar terms

can be written for the net number of particles leaving V,-j at the areas

BUM/2. Therefore the combined result of loss from V,-j across the spatial

boundaries is

l‘mwm(A1+1/2_,-(Ptlr+ l/2"~—A|-_ l/ZJqs'if V”)

+ nmw'"(BiJ+ l/I‘P'LJ+ v2 _ BI'J— l/2<P.lr‘i_ 1/2)

The loss due to particle collisions is

2mm.

and the gain due to inscatter (under the assumption of isotropic scattering)

and sources is

M

.;1'= (‘m—‘2;’ 2 Wm? M HWW

I] m m l] m

n=l

We can use the methods employed for one-dimensional spherical geome-

try to compute the angular redistribution terms. In that case we assumed

that the effective areas for angular flow across (2,": m were am: I”.

However, rather than repeating the step in which the terms were renormal-

ized, we note here that the net effect was to multiply the angular redistri-

bution term by the quantity (for spherical geometry)

A_ 2 A_ 2

8'7rr,-Ari=47r(r,+ —4'rr(r,~—-2_n) =Ai+1/2—Ai—1/2

Therefore we express the net loss from Vl-wm due to angular redistribution
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THE DISCRETE ORDINATES METHOD [:1 453

across aimi 1/2 as

(Ai+ l/ZJ _Ai— l/2J)(am+ |/2<P'i|j+ 1/2— “01- l/zq’g— 1/2)

where we must still determine amtl/z. Note that we could also allow for

angular redistribution in a second direction by defining a similar term

(BAH 1/2 _ BI-J- 1/2)( Bm+ |/z‘P/'{+ 1/2 — Bm— l/Z‘Prii— 1/2)

However in the standard two-dimensional geometries, there is curvature in

at most one direction, and we continue to treat this case only.

Combining these gain and loss terms and dividing through by w,,,, we

obtain the basic particle balance equation for the phase space cell Vijwm:

-u‘m(Ai+l/2J‘Prh+‘/2J—Ai—l/2,j(prh_ l/z‘j)

+ n"'(B"J+l/2‘P'1r-IJ+l/2 _ BiJ— |/2<P,i1"~_ 1n)

“mu/2 ,~ 0‘ -1 2 ,~

+(Ai+l/2,j—Ai—l/2,j)( w <P»{+|/2_ mw / ‘Pd-v2)

+Et<pm=qitnj (829)

Table 8.4 contains the explicit expressions for the A, B, and V

coefficients for the standard two-dimensional geometries. Moreover, Eq.

8.29 is applicable to Cartesian geometries because in this case AMI/A’:

AFVZJ and B, J. +1 /2=B,- J-_l /2 (no area divergence) so that the angular

redistribution terms will vanish.

We can evaluate the a and ,8 terms in a manner similar to that used for

one-dimensional spherical geometries (Section 8.1.2). Again we want to

consider a situation in which divergenceless flow exists in a region with a

constant absorption cross section and a constant source. In this case the

Table 8.4 E] Area and Volume Elements‘z

Geometry dV dA dB A,+ l/ZJ BvJ+ l/z V,-~

I

(x,y) dx dy dy dx Ayj Ax,- Ax, Ayj

(r,0) rd0dr rd0 dr 2'rrr,-+ l/ZAOj Ari 2wfAr,-A0j

(r,z) 21rr drdz 2'rrrdz 2'rrrdr 2'rrr,-+ l/ZAzj Zvri‘Ar, 21rFAr,-Azj

“In this table fE(r,>+l/2+r,-_|/2)/2-
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454 El NUMERICAL METHODS IN TRANSPORT THEORY

flux is a constant o0 and Eq. 8.29 becomes

P'm(Ai+ l/ZJ _ Ai— |/2J)¢o + 11m(BiJ+ |/2 _ BiJ— |/z)¢o

anH-l/Z—am—l/2

w

m

S

+(AH-l/2J_Ai—l/2J)( )¢o+21¢oVij=(4—;)Vij

But since this solution satisfies

SO

EI¢0[/ij=(E) Vij

and 13,-‘,+ |/2= B,J_ W by assumption, we conclude

)+ (Ai+|/2J''Ai-|/2,;)(am+1/2_“m—|/2) :

p'rn(Ai+l/2J—Ai—l/2,j w 0

"I

This yields a relation to calculate the or terms

am+|/2_am-i/2=_llmwm (830)

For such multidimensional problems the evaluation of the a terms is

more complicated because 9," depends on both a," and nm. For a given

value 1),‘, we may have several 11,-. (In this regard, keep in mind the

latitudinal point arrangement schemes outlined in Section 8.1.1.) In partic-

ular, there will be a most negative )1,- into which there is no angular

redistribution, and also a most positive ,u,-, out of which there is no angular

redistribution. These directions approximately represent streaming inward

along a radius vector or streaming outward. In general one sets the (ll/2 =0

for the smallest p, for each nk. If symmetric sets in a are used, this ensures

that the last a is also zero and results in a conservative difference relation

when multiplied by wm and summed over all angles. However details of the

actual calculation of the various or terms are somewhat problem (and code)

dependent, and perhaps it is best to refer the interested reader to the

various code manuals (e.g., for TWOTRANl7 or DOT“).

The basic idea behind the method of solving the discrete ordinates

equations in multidimensional geometry is the same as that for one-dimen-

sional geometries. We attempt to rearrange the system of equations into a

“lower triangular” form by proceeding to solve the discrete ordinates

equations in the direction of particle motion.
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THE DISCRETE ORDINATES METHOD 1:] 455

Once again we must introduce relations between the cell-centered and

cell-edged fluxes to reduce the number of unknowns. The symmetric

diamond difference relations are chosen

¢..1'= %(<p;.+'/2J+<p:.-'/~)

¢4¥= %(¢.":’*‘”+q>.‘¥“”)

17-. 1 ij ij

mm _ E(‘pm+l/2+(pm—l/2)

The difference equations (8.29) are to be solved in the direction of

particle motion; therefore the cell-edged fluxes of” Lamb’. 31/ 2 represent

either incoming or outgoing fluxes for a given spatial mesh cell and

direction 9,". Since the incoming fluxes generally are known either from

the boundary conditions or as a result of a calculation in an adjacent cell,

our goal now is to express the cell-centered flux in terms of the incoming

fluxes only. In addition, for curvilinear geometries the fluxes tpg'fl/z also

represent outgoing or incoming fluxes, respectively, across the angular

edges at amtl/z. We now adopt the convention that the angular sweeps

(iterations over index m) proceed in the direction of increasing m. This is

consistent with the physical process of ray-to-ray transfer if the directions

82," are indexed so that for a given n, the index m increases for increasing

IL. The argument is the same as in the one-dimensional spherical geometry

case; there can only be angular redistribution in the positive [.1 direction.

The effect of this convention is that (nil/2 is an incoming flux for the

phase space mesh cell. Therefore we only need to identify the incoming

fluxes on the spatial edges at x,-: l /2 and yj: I /2. (Note that this discussion is

applicable to r—0 and r—z geometries by simply replacing x and y with r

and 0 or r and 2, respectively.) The identification of the incoming fluxes

may be made by inspection if we remember that in all cases the (um)

coordinate system lines up with the (x, y) coordinate system (i.e., um=

flm-éx and 17m=82m-éy). First we group the directions {9",} into four

categories depending on the quadrant in ( 11., 1|) space. These are defined in

Figure 8.15. Next we consider a typical mesh cell, as illustrated in Figure

8.16. Clearly the cell edges A and B are incoming boundaries for a

direction S2," in quadrant 111. The incoming boundaries for other directions

are similarly defined and are noted in the legend of Figure 8.16.

Therefore for a given mesh cell we know <p,i{_ [/2 and one of each of the

pairs ofl/ZJ and mfg/2. We then use Eqs. 8.29, 8.30, and 8.31 to
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Fig. 8.15 [:1 Quadrant definition for two-dimension angular geometry.

1..

l

)7+i/2

I

’/'—tF_—— |(.-T_—**§—

l

l

J/j-1/2 I‘c

xi-i/z T xi+112

xi

Fig. 8.16 [1 Spatial mesh cell. The quadrants have the following incoming

boundaries: 1, C. D‘, II, B, C; III, A, B; IV, A, D.
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eliminate the outgoing fluxes and arrive at an expression for the cell-

centered flux q>,',{ in terms of the incoming fluxes:

ij_ l1u'ml(Ai+1/2J+Ai—l/2,j) i:1/2J+ 2|T'mlBij Mil/2

(Pm _ D (pm D (pm

(Ai+l/2.j_Ai—l/2,j)(am+ 1/2+ am— i/2)W,;I U Vijqrirj

+ D (Pm—l/Z-l- D

where

D 5l #ml(A1+ l/2J+Ai— l/2,j) +2l7lmlBij

+ (Ai+ i/2,; — Ai— |/2,,-)(‘1m+ 1/2 + am— i/2)W»T l + EijVij (8-32)

For example, if Q," is in quadrant I, then tpifl/ZJ and (pg—I” are

incoming fluxes and therefore are used in Eq. 8.32 to determine (pg. Then

the diamond difference relations can be used to extrapolate the outgoing

fluxes (ELM/2*", q>,£;i+ V2, and (pg, V2 for the mesh cell. These may then be

used as incoming fluxes for an adjacent cell.

For Cartesian geometries, there is no angular redistribution, hence no

eg, I” terms. In this case the angular sweeps are decoupled, and one can

proceed from the known incoming fluxes for each m through the spatial

mesh. Thus the known boundary conditions are sufficient to begin the

solution procedure. However with curvilinear geometries one must also

have an initial condition for the incoming angular boundary. As noted

previously, we initialize the angular redistribution recursion relation (8.30)

for the smallest p. for each 11 level. Assuming this initial direction is

flm=(um,1;m), we then use a step function relationship to relate the

cell-edged and cell-centered fluxes for this direction:

lpg=¢g+vz

This can then be used in place of Eq. 8.31 to find the same equation for (pg

as Eq. 8.32 except that the terms with (am +1 /2+ am_1/2) disappear.

In summary then, the steps for sweeping through the space angle mesh

are as follows:17

i Choose a quadrant of directions (pm) and begin at the mesh cell at

the intersection of the two corresponding incoming boundaries.

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



4581:]

NUMERICAL METHODS IN TRANSPORT THEORY

iii Use Eq. 8.31 to compute the cell-edged fluxes on the outgoing

iv Proceed to the next cell and compute the cell-centered flux with Eq.

8.32 along with previously calculated cell-edged fluxes and known

talus

wlu

k ~|_.

ii Use the known incoming boundary fluxes to compute the cell-

centered flux from Eq. 8.32.

boundaries

of the cell.

boundary fluxes.

I DB

1

@t

)9\ @

‘sh/l, ‘4.’; 'B

a @\ 4.

i ‘ " 5

Sweep3(ll)

f f

o’_\ |’—\\ 03

lo’

Notes: —-—> Calculation with Eq. 8.32

-— —> Extrapolation with Eq. 8.31

A

\11

y Sweep

B

2 (IV)

8

® -

El.

6

I TEN

1 . Q)

:r \.

9i @

Bl’ \\\__/fl \‘/4'

.15‘) i

.Y

Sweep 4(1)

‘1 ‘1

\N ,\\

\,(

\

|

‘r

I

i

B

Circled numbers indicate order of steps (e.g., step 6) begins

at the right—top boundary and proceeds left across the top

A

row for all directions Q“ G quadrant Ill)

"3" Indicates that node is an incoming boundary for that particular direction

Fig. 8.17 El Typical progression through space angle mesh.
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Figure 8.17 illustrates the procedure for a typical mesh. It is assumed that

initialization of the fluxes in the special starting directions is performed

where needed.

8.1.4 [1 Finite Element Treatment of the Spatial Variable in the Discrete

Ordinates Equations [1 The preceding discussion of the discrete ordinates

method has been devoted to the “classical” approach, which combines a

discrete ordinates treatment of the angle variable with standard finite

difference techniques in the spatial variables. However a recently devel-

oped alternative formulation combines the discrete ordinates method in

angle with the finite element method in space.” This scheme, which is the

basis for the TRIPLET/TRIDENT20 and ONETRAN2l computer codes,

has yielded impressive results for a variety of applications.

The particular application of the finite element method to the solution of

the discrete ordinates equations is based on a unique implementation of

the familiar Galerkin integral law formulation of the transport equation

(cf. Section 8.3). By applying the finite element method locally on an

individual mesh cell basis rather than on a global basis, the highly

successful solution algorithm of discrete ordinates codes can be retained,

and one can solve for the fluxes in the direction of particle motion. Thus

the solution procedure is nearly the same as in the conventional finite

difference—discrete ordinates computer codes in which one progresses from

mesh cell to mesh cell, solving a system of equations relating the mesh cell

fluxes in the direction of particle flight.

Although the basic approach is the same for both one- and two-

dimensional discrete ordinates applications, the implementation for the

latter case is somewhat more cumbersome because of the geometrical

complexity of tracking particles through a triangular mesh. Therefore we

consider the one- and two-dimensional applications separately.

One-Dimensional Geometries El We begin with the finite element—discrete

ordinates method as applied to one-dimensional geometries and as imple-

mented in the ONETRAN21 discrete ordinates computer code. For sim-

plicity, since the treatment of the angular edge fluxes (i.e., (pmtl/z) for

curvilinear geometries is identical to the conventional discrete ordinates

treatment, we consider only the slab geometry.

Before launching into details, let us demonstrate the similarity of the

finite element and conventional formulations of the discrete ordinates

method for the one-dimensional case. The mesh cell in Figure 8.18 is
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\dmly’ lprlnfi/z

‘-t/ l - ‘ ~__‘ > ‘

v‘m ’ 0 o u,,, 0w: 4 ‘pg’ 0 0d," I/1 win”. 0 0

i i

‘pm—VI ‘pm—V:

Conventional SN Finite element SN

Fig. 8.l8 [1 Typical mesh cells for finite difference and finite element—discrete

ordinates methods.

typical for such applications. If we now consider a direction um >0, then

clearly of V2 is the incoming flux for the spatial boundary, and qa,i,_ V2 is

(always) the incoming flux on the angular boundary. In the conventional

finite difference—discrete ordinates approach we solved for (pf,I +1 /2 and

(P,£,+l/2 by first computing the cell-centered flux (1);‘, then using the di-

amond difference relations. However the solution for (pi +1” could have

"I

been obtained directly by eliminating (p;I and (p;I +1 /2 from the basic

difference equation (8.29), using the diamond difference relations

<P.‘..=%(<P,i,+'/2+<P,L_‘/2)

w,L+1/2=<P,i.+‘”+qvL‘mflnL-l/z (8-33)

This would result in an equation for the outgoing flux q>,',,+'/2 in terms of

the incoming flux qxif 1/2.

The finite element method is not significantly different. The diamond

difference assumption for the angular edge fluxes, Eq. 8.33, is used, but the

spatial edge fluxes are computed by solving two equations. There is no

“cell-centered” flux in the finite element mesh cell; but then, we noted that

it really is not necessary for the conventional application either. The main

difference is that the outgoing flux from the adjacent cell, which is labeled

m3, is not the flux on the incoming edge of the mesh cell as it is in the

conventional finite difference—discrete ordinates method. Rather, the out-

going flux from the adjacent cell is treated as an incoming source of

particles, and one solves for the incoming and outgoing cell-edged fluxes

simultaneously. Thus the spatial flux can be discontinuous at the cell
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¢=1

r x

Xi_‘/, xi + ‘/=

Fig. 8.19 1:] Discontinuous finite element basis functions.

edges. This can lead to a marked improvement in accuracy for some

problems.

The discussion above is intended to motivate our decision to consider

only the derivation of the equations that relate the cell-edged fluxes

(including treatment of the discontinuities), since this is the essential

difference between the conventional finite difference and finite element

formulations of the discrete ordinates equations. Only slab geometry is

considered here because of the similarity to the spherical geometry case.

We now derive the equations relating the spatial cell-edged fluxes using

the finite element method.” (The reader may wish to refer ahead to

Section 8.3 for a more general discussion of the finite element method.) If

we consider a typical spatial mesh, the flux <pm(x) is expanded in terms of

finite element basis functions over the mesh cell. These basis functions

\l/ii1/2(.X) are unity at xiil/z and zero at xizl/z, respectively, and are

similar to the standard Lagrange basis functions (see Figure 8.19). These

basis functions differ from the usual linear Lagrange basis functions,

however, since they are discontinuous. This makes them particularly useful

for the treatment of problems with material discontinuities.

More specifically, we define the finite element basis functions as

xi+1/2_x

’ X'—1 2<x<x+12

¢i-1/2(x)= xi+l/2_xi—l/Z I / I /

0, otherwise

x_Xi—1/2

-—_, x,-_ <x<xi

¢z+i/2(X)= xi+l/2—xi—l/2 v2 H”

0, otherwise
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462 El NUMERICAL METHODS IN TRANSPORT THEORY

We now expand tpm(x) in terms of the iI/I:I/2(x)

1Pm(x) = ‘I’: l/71l’i-1/2(X)+ ‘Pi’: ‘fill/H |/2(x)

where (film/2 are the cell-edged fluxes. Using the explicit forms of

4'1: |/2(X)’ we have

1 -_ .-

(Pm(x)= [(xi+ |/2_ 10(1):" I/2‘l'(x — xi— i/2)‘Pm+|/2]

where Ax,- = x,+ I /2 — x,_ I /2. The source term qm(x) is similarly expanded in

terms of its cell-edge values,

1 ._ i

qm(x) = [(xi+ 1/2— x)qr‘n l/2+(x _ xi— l/2)qm+l/2]

Introducing these expansions into the discrete ordinates equations, we find

dip 2i ._ .

tend—)2" + A—JQ [(x.-+|/z-X)¢,‘.. '/2+(X—X.~_|/2)<P;I+'/2]

i—1/2

1 .-

=K[(xi+l/2_x)qm H/z

+(x_xi—l/2)qm ]

(8.34)

The derivative term will be evaluated momentarily.

The Galerkin (or integral law) formulation of the finite element method

typically proceeds by multiplying Eq. 8.34 by the finite element basis

functions and integrating over the mesh cell. That is, the weighting

functions for the finite element method are chosen as the basis functions

Th: I /2(x). However it is more convenient to choose the following alterna-

tive weighting functions:2|

¢1(x)=la (P2(x)=x_xi_l/2 fOI' ILm>0

and

<Pi(x)=l, <P2(X)=xi+i/2_x for 11m<0

It can be shown that the use of the weighting functions above is equivalent

to Galerkin weighting, although the exact form of the resulting equations is

altered. This particular choice of weighting function simplifies the spatial

integrations rather considerably.
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THE DISCRETE ORDINATES METHOD 1:] 463

Let us assume that um >0 and perform the weighting explicitly:

*H» 1/2 dtpm

um] dx —

Xi ~ 1/2 dx

2'' x,-+|/2 _ i_ i

dxl[(xi+‘/2_x)q>m l/2+(-x—xi—l/2)(pm+l/2]

I xl—l/Z

l Xi+|/2 I__ i

dxl[(xi+l/2_x)qm I/2+('x_xi—l/2)qm+l/2

I xi‘l/l

The streaming term can be integrated and evaluated by imposing the

boundary condition that the flux on a boundary be the limiting value of

the angular flux as the boundary is approached in the direction of particle

motion. In other words,

. = B - ‘ : i+l/2

x—kr?_1|/z(pm(x) (Pm, pawl/“h(x) ‘Pm ’ and

lim tpm(X)=<P,£,—l/2, lim <z>m(x)=<z>,f, P'm<0

x—>x,-_|/z X—>X,+1/2

(The notation of refers to the incoming flux on the boundary due to the

adjacent cell.) Thus the streaming term becomes (noting um >0)

MMXHZTJZ = u,,.(v>,i.+ ‘/2 — of)

The significance of this boundary condition is that an outgoing flux

from a mesh cell is treated as an incoming source of particles for the

adjacent mesh cell. However the flux just inside this adjacent mesh cell

(e.g., (p: ‘/2 for um > 0) is not constrained to equal the incoming flux (p3. If

the actual angular flux exhibits a “near discontinuity” at the boundary,

perhaps because of a material or source discontinuity, this behavior may

be better approximated with the discontinuous basis functions. The use of

discontinuous finite elements is discussed in greater detail in Section 8.3.

The remaining terms are readily integrated to yield the first equation:

11m(¢LH/2'<P:)+El(A;)(‘Pif'/2+(PLH/2)=%AXi(q:l/2+qLH/2)

or collecting terms,

.Axi ._ .Axi . Ax, I._ I.

(E£7)<P,; ‘/2+(um+EiT)<P,if'/2=(7)(qm ‘/2+qm+'/2)+11mq>,5

(8.35)
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464 D NUMERICAL METHODS IN TRANSPORT THEORY

The second equation is obtained by weighting Eq. 8.34 with <p2(x)=

x"xr-|/2:

X,+|/2 dqim

#mj; dx(x_xi—l/2)I

i~l/2

xi-H/Z i_ i

+ dX(X—xi-|/2)[(Xi+|/2‘X)‘Pm l/2+(x_Xi-1/2)‘PmH/2]

l J‘HI/2 ._ i

= dx(x_xi—l/2)|:(xi+l/2_x)qri| l/2+(x_xi—l/2)qm+]/2]

I 'xlrl/Z

The streaming term can be integrated by parts to find

Kin/2 d1]? 3 i i—

11". f dX(X — x.-- ./.)d—; = #mAx-w/J '/2 ~— i1».(%)(<l>,,.+ '/2+ ‘Pm l/2)AX.-

Xl-i/z

The remaining integrals can be easily evaluated so that our second equa-

tion becomes

(- 3,1,, + 2§Ax,.)<p,"; '/2+ (3pm +22';Ax,)<p,i,+ '/2

=Ax,.q,","/2+2Ax,q,;+'/2 (8.36)

We can follow a very similar procedure for um <0 to find

Z'IAxi ._ Z'IAxI- . Ax,- ._ .

(-u...+ '2 )8)‘. ‘/2+(—'2 )<P,‘..*‘/2=7(q,'n '/2+q.£.+‘/2)—#m¢,5

(8.37)

and

(- 3n». + 221M082— '”+ (3H... + ELM-MT '/2 =24x.-q,i‘ '/2+Ax,-q.i.* '/2

(8.38)

Clearly Eqs. 8.35 and 8.36 are equivalent to Eq. 8.13 for p," >0 from the

conventional finite difference—discrete ordinates method, and similarly

Eqs. 8.37 and 8.38 replace Eq. 8.14 for um <0. The difference, of course, is

that both cell-edged fluxes are unknowns because the incoming flux is not

continuous at the boundary. (Reference 21 should be consulted for the

detailed equations for one-dimensional spherical and cylindrical geome-

tries.)
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Therefore the essential differences between the finite difference—discrete

ordinates and finite element—discrete ordinates method can be summarized

as follows: (i) the angular flux is not continuous in the spatial variable in

the finite element method; (ii) the spatial diamond difference relations are

not utilized to relate the cell-edged fluxes—rather, a weighted residual

formulation of the finite element method is used to derive an alternative

set of equations relating the spatial cell-edged fluxes. The systematic

progression through the space angle mesh will be identical to the conven-

tional discrete ordinates method except for the solution of the equations

above.

The finite element scheme has two inherent disadvantages when com-

pared with the conventional discrete ordinates method. First, computa-

tional times per mesh cell are increased substantially because two relatively

complicated equations are solved at each mesh cell rather than the simple

diamond difference equations. Second, computer storage requirements are

increased considerably because the cell-edged fluxes and sources are

needed instead of the cell-centered values. In addition, there are several

more coefficients (e.g., the (11,;: '/2 terms) to be stored for each cell with the

finite element scheme.

However these disadvantages are compensated by the ability of the

finite element scheme to yield comparable accuracy with a significantly

coarser spatial mesh. In addition, the finite element scheme reduces the

propensity for negative fluxes and thereby avoids the need for costly

negative flux fixup algorithms.

Two-Dimensional Geometries E1 The finite element—discrete ordinates

scheme has also been applied to two-dimensional x—y and r-z geome-

tries.'9'2° The mesh is partitioned into triangles (with certain restrictions),

and the unknown angular flux is expanded in terms of a set of linear basis

functions over each triangular mesh cell. As in the one-dimensional case,

the angular flux in the direction of particle flight is assumed to be

continuous within a mesh cell, and the flux on an incoming boundary is

allowed to be discontinuous. The equations for the cell-edged fluxes are

obtained by inserting the expansion for the flux in the discrete ordinates

equations, then weighting and integrating. The general procedure is to

sweep through the space angle mesh in the direction of particle flight, but

now the triangular mesh complicates the situation somewhat. In contrast

to orthogonal meshes, the incoming boundaries of a triangular mesh cell

are determined by both the direction Q," and the orientation of the

triangle. Thus the progression through the mesh is not a well-defined

operation. For this reason the triangles are restricted to lie on horizontal

bands (see Figure 8.20). This allows for a relatively easy determination of

the appropriate incoming boundaries.

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



466 [:1 NUMERICAL METHODS IN TRANSPORT THEORY

J‘

L.

Fig. 8.20 E] TRIDENT mesh structure.

To be more specific, consider the representative triangular mesh cell

sketched in Figure 8.21, where there may be triangles adjacent to the

triangle of interest. The direction It", determines whether the sides a, b, or

c correspond to incoming or outgoing fluxes. If we choose II," as indicated,

clearly b is an incoming boundary and a and c are outgoing boundaries.

Note that each vertex represents six angular fluxes, one for each triangle,

since we are not assuming the flux to be continuous across the triangle

boundaries.

The discrete ordinates equations

a a m

“8% + "m ‘q;- + EKX’YNAW) = 11.08)») (8.39)

are then approximated by the finite element method as follows.20 First the

flux 1pm(x,y) is expanded in a linear polynomial (in x and y) over the

d

Fig. 8.21 [J Triangular mesh cell.
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triangle. Since a linear polynomial in two variables contains three degrees

of freedom, three pieces of data will be necessary. These are conveniently

chosen to be the vertex fluxes. Therefore, with the appropriate basis

functions 111,, we have

3

<Pm(x,y)= g‘ nit-(w) (8-40)

Next we substitute Eq. 8.40 into the discrete ordinates equations (8.39),

multiply by weighting functions (pl, (P2, and (1:3, and integrate over the

triangle. Here we use the boundary conditions that the angular flux on a

boundary is the limit of the angular flux as the boundary is approached in

the direction of particle motion.

The first step implies that the basis functions are unity at the vertex i

(corresponding to <p,§,) and zero at the other vertices. The explicit forms for

these basis functions are

(x _ x2)(y3 _y2) — (x3 _ x2)()’ _)’2)

(X3 _ x2)()'2 ")’|) _ (x2" XIX)’; —y2)

\I/i')(X,y)=

= (x — X3)(y1 _y3) _ (x1 _ x3)()’ _)’3)

(X1 - X3)(y3 —y2) - (X3 — X2)(y1—y3)

W’Ocy)

(x _ xl)(y2_yl) - (xz— XIX)’ _y1)

(x2" xl)(y| _y3)_(xl — x3)(y2_yl)

~P.‘-”(X,y) =

The weighting functions tp,-(x,y), i= 1,2,3 are chosen to be 1, x—f, and

y—y, respectively, where (2,7) is the centroid of the triangle. These

weighting functions are complete in the space of linear polynomials de-

fined on the triangular domain, therefore could be used to expand the

basis functions. That is, this weighting scheme is equivalent to Galerkin

weighting.

As mentioned earlier, the progression through the space angle mesh is no

longer straightforward. Since a triangle boundary can be incoming or

qutgoing, depending on its orientation with respect to the specific direction

9,", a test must be made at each boundary for each direction. The

progression through the mesh is begun at the top band. For this band, the

incoming directions are in quadrants II or III (see Figure 8.15). First, all

directions in quadrant III are swept by progressing through the top band

from right to left. If all its incoming fluxes are not known, a triangle is

“skipped” temporarily when it is encountered. Figure 8.22 indicates the

order in which the triangular mesh cells are analyzed for a typical row.
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lKnown)

8| 8| HI

Fig. 8.22 1:] Typical progression through triangular mesh (B denotes boundary

or known flux from row above and number indicates order of calculation).

Then we can proceed from left to right for all angles in quadrants II. This

procedure is repeated for the next band until the bottom band is reached,

at which time quadrants I and IV are swept, and the bands are traversed

from bottom to top.

Comparison with Conventional Discrete Ordinates Methods [1 The finite

element treatment in space may seem relatively cumbersome for two-

dimensional geometry compared with the conventional diamond difference‘

scheme. It furthermore exhibits a twofold to threefold increase in computa-

tion time requirements. Nevertheless the finite element-discrete ordinates

method does offer some substantial advantages:

i Negative fluxes and flux oscillations are strongly suppressed. Thus

there is no need for the costly negative flux fixup schemes.

ii Hexagonal and curvilinear geometries are conveniently treated with a

triangular mesh.

iii The discontinuous finite element scheme couples quite readily with

the coarse mesh rebalance acceleration methods (cf. Section 8.1.5).

These advantages may far outweigh the greater complexity of the mesh cell

calculations for finite element methods. However every problem is diffe-

rent, and the choice between conventional and finite element discrete

ordinates methods should be made on a case-by-case basis.

8.1.5 [3 Additional Numerical Considerations [1 The efficient im-

plementation of the discrete ordinates method requires several modifica-

tions in the basic numerical algorithm such as schemes to accelerate the

scattering source iterations or prescriptions to mitigate a variety of deleteri-
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ous numerical phenomena including negative fluxes, flux oscillations, and

the ray effect. This section briefly considers these problems and examines

their treatment in current discrete ordinates codes.

Acceleration Schemes E1 The basic algorithm for solving the discrete

ordinates equations can be represented by the following matrix iteration

equation

<p<">=A —‘(B<p<"-‘>+S)

where A is the lower diagonal matrix representation of the streaming

collision operator, IZ~V +AEI, and BAis the matrix representation of the

inscattering operator, fdfl’Es(r,fl’->SZ)<>. The rate of convergence of the

iterations is determined by the relative “sizes” of A and B. In the extreme

case of no scattering, B=0, and the method converges in one iteration. As

the amount of scattering (or equivalently, the scattering ratio c=2,/E,)

increases, so in general will the number of iterations required for conver-

gence to an acceptable solution. For problems with large spatial domains

that have scattering ratios near unity (e.g., a moderator channel in a

nuclear reactor pin cell calculation), the rate of convergence can be

unacceptably slow.

Several methods have been proposed and applied to accelerate the

convergence of the scattering iteration including coarse mesh rebal-

ance,22‘24 Chebysheff acceleration,25 and synthetic methods.26 We discuss

only the most popular of these methods, coarse mesh rebalance, and leave

the details of the remaining methods to the references.

The essential idea behind the coarse mesh rebalance method is to force

conservation of neutrons over “coarse” regions of the spatial domain (as

compared to the “fine” mesh structure used in the discrete ordinates

calculation). The approximate solution is forced to obey particle conserva-

tion over these larger regions in the following manner:‘ Assume that we

have partitioned the spatial domain V into coarse mesh regions VI,

l= l,2,...,N. Let us now integrate the neutron continuity equation (see

Section 4.2.1) over an arbitrary cell VI

d3rV'J(r)+ f d3r2a(r)¢(r)= f d3rS(r)

and use the divergence theorem to express the streaming term as

fVId3rV-J= fs‘dsg-J
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Using the standard notation for the incoming (—) and outgoing (+)

partial currents, we can write

I dSéJ-J = dsJ+ - dSJ_

s, s, s,

therefore the continuity equation yields a particle balance condition:

dSJ, - 2f dSJ_ +f d3rEa¢= d3rS

SI J 511 V I V!

Here S, _, is the boundary between coarse mesh regions V, and V1, and the

summation is taken over all coarse mesh regions VJ that are adjacent to V,.

Now in general if we were to compute J Sf), J Y’), and 4:“) directly from

the results of the nth iteration, the balance condition would not be

satisfied. Therefore we attempt to force agreement by determining the set

of rebalance factors f,, 1=1,2,...,N, which result in the balance condition

being satisfied when used as multiplicative factors for both the scalar flux

¢(")(r) and the outgoing partial current 1200) for the corresponding coarse

mesh volumes

d J<">- dS J(_")+ d3 2,, <">= d3rS

LI + 2L” I, IV! r I"!

Since this holds for all I, this is simply a system of equations for the

rebalance factors f,:

Rf=S

We then solve this relatively simple system of equations for the f, and

multiply each of the angular fluxes from the latest iterate (pm by its

corresponding rebalance factor. We then arrive at a rebalanced angular

flux estimate, denoted 6%"), which may then be used to find 1120'“).

In practice one obtains substantial reductions in computation time with

the coarse mesh rebalance method. However the method can result in little

or no acceleration27 if one is simultaneously employing the discrete

ordinates to spherical harmonics fictitious source scheme to alleviate the

ray effect (see next section). In this case it has been found that the use of

discontinuous spatial differencing schemes mitigates this difficulty to some

extent.28 Thus the use of coarse mesh rebalance has been found to be quite

successful when used with the discrete ordinate—finite element methods

(TRIPLET/TRIDEN'I). The general theory of the coarse mesh rebalance

method may be found in References 29 and 30.
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Negative Fluxes and Flux Oscillations El Section 8.1.2 discussed the stabil-

ity and positivity of the diamond difference scheme. We do not expand on

this subject any further except to note that the presence of flux oscillations

in the discrete ordinates solution is related to the problem of negative

fluxes. That is, the diamond difference relations generally result in a

prediction of the cell-edged fluxes that oscillate about the actual values. Of

course, since the cell-centered flux is the arithmetic mean of the cell-edged

fluxes, this would imply that the cell-centered fluxes will be predicted quite

well in general. Since the cell-centered fluxes are used in the integral terms

[i.e., fd3r 2,(r)¢(r)], the net result of this is that reaction rates are predicted

quite well at the expense of the annoying oscillatory behavior of the

cell-edged fluxes.6 Thus the diamond difference scheme can result in

oscillatory fluxes, but as long as they are damped, the net effect is not

serious from a computational standpoint. As with negative fluxes, one can

shift to a different scheme (e.g., a step function scheme), but then the

inherent accuracy of the diamond difference scheme must be sacrificed to

mitigate this oscillatory behavior.

The Ray Effect E] The most serious (and well-known) affliction of the

discrete ordinates method is the ray ejfect.3"32 This phenomenon is not due

to the numerical discretization schemes, but rather to the basic discrete

ordinates approximation itself which, in essence, consists of solving the

transport equation along a few discrete characteristics (i.e., rays). Alterna-

tively, one can describe the discrete ordinates method as a transformation

of the rotationally invariant transport equation to a finite set of coupled

(via scattering) transport equations that are at most invariant under

discrete rotations.

To illustrate why the loss of rotational invariance and the solution of the

transport equation along discrete characteristics can lead to defective

results, let us consider an isotropic line source in a purely absorbing

medium.3 Then clearly the resultant analytical angular flux away from the

source will possess azimuthal symmetry about the source. But if we apply

the discrete ordinates method to this situation, the resultant angular flux

will consist of 8-functions in the azimuthal angle (and polar angle) because

only the specific directions emanating from the line source will contain

source particles (see Figure 8.23). Although the solutions along the discrete

directions flj will be satisfactory, we note that many of the mesh cells are

not intersected by an allowable direction from the line source. Since the

medium is a pure absorber and the only source of particles is the line

source, the angular flux will be identically zero in these mesh cells. Thus

the discrete ordinates method approximates the azimuthally uniform angu-

lar flux by a discrete set of 6-functions at discrete azimuthal angles. Hence
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Actual solution, symmetric

about origin

Discrete ordinate solution,

nonzero ugly in discrete

directions 0,.

Fig. 8.23 El Ray effect from an isotropic line source.

for this situation the discrete ordinates approximation is quite poor. This

example is admittedly severe, yet there are frequent physical situations that

contain elements of the example, such as an isolated source in a strongly

absorbing medium.

One potential remedy would be to introduce additional discrete direc-

tions. However, in addition to increasing the computational effort signifi-

cantly, it has been found that some realistic configurations result in ray

effects for quadrature sets employing as many as 144 discrete directions.32

Therefore one cannot be assured that this remedy will help.

Another approach that has been quite successful is to transform the

discrete ordinates equations to spherical-harmonicslike form. The motiva-

tion for this is that the spherical harmonics equations are invariant under

arbitrary rotations, as is the transport equation. Therefore the spherical

harmonics equations do not exhibit the ray effect under any circumstances.

A variety of methods27*28’3‘_34 have been proposed to achieve this conver-

sion by addition of a fictitious source to the discrete ordinates equations.

These sources are not unique, and they consist of linear combinations of

various derivatives of the angular flux. Numerical results indicate that the

S,,,—>PN_l conversion method works quite well in eliminating the ray

effect. However it does introduce computer run time penalties because the

fictitious source slows down the convergence significantly.27 For example,

the use of the S,,,—>P,,,_l method in the two-dimensional discrete ordinates

code TWOTRAN results in an increase in computer time by at least a

factor of two.17
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8.1.6 [1 Discrete Ordinates Computer Codes El We conclude this sec-

tion with a brief review of the standard production-level discrete ordinates

computer codes, without attempting to identify the latest versions of the

codes. The interested reader should refer to either the Argonne Code

Center (ACC) or the Radiation Shielding Information Center (RSIC) at

Oak Ridge National Laboratory for current information on these codes

and their various versions. Furthermore, we make no attempt to sort

through the history of the various codes. (Reference 6 contains an excellent

review of the history of various discrete ordinates codes along with a

detailed summary of the options available in the codes.) Finally, since

most of these codes have versions that are intended for specific computer

systems, the user should consult either the ACC or RSIC catalogs for

further information regarding which version is compatible for a particular'

system.

ANISN (ORNL). The ANISN code is an efficient, versatile multigroup

discrete ordinates code that may be used directly for neutron or gamma

transport in one-dimensional slab, spherical, or cylindrical geometries.

ANISN allows general order anisotropic scattering. Cross section data can

be prepared either by compatible cross section codes (e.g., TAPEMAKER)

or directly as macroscopic data. ANISN offers a wide variety of boundary

condition options, source options, and criticality search options. ANISN

also allows the option of performing a diffusion theory solution to initiate

the S,V algorithm.

DTF—IV (LASL). Similar to ANISN in its capabilities, DTF-IV is a

general purpose multigroup discrete ordinates code for neutron or gamma

transport in one-dimensional slab, spherical, or cylindrical geometries.

ONETRAN (LASL). ONETRAN employs discrete ordinates in angle

3 with a local, discontinuous finite element method in space and is applica-

ble for neutron or gamma transport in one-dimensional slab, spherical, or

cylindrical geometries. It also allows a general angular treatment for

one-dimensional slab geometries that do not exhibit any symmetries in the

angular domain. ONETRAN offers roughly the same options as the

ANISN/DTF-IV codes, but the computational time in general is greater

because of the discontinuous finite element approach. However, as noted

in Section 8.1.3, for problems with severe heterogeneities, ONETRAN

should offer significant advantages over the standard discrete ordinates

codes.

DOT (ORNL). The DOT code is a multigroup discrete ordinates code

for two-dimensional geometries. DOT can treat general order anisotropic

scattering and has a wide variety of options for sources, boundary condi-

tions, criticality searches, and so on.
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474 l] NUMERICAL METHODS IN TRANSPORT THEORY

TWOTRAN (LASL). The capabilities of TWOTRAN are similar to

those of DOT in that TWOTRAN is a multigroup discrete ordinates code

for two-dimensional geometries with many of the same options as the

ORNL code.

TRIDENT (LASL). TRIDENT, originally known as TRIPLET, was the

first production level transport code to employ finite element methods. The

code combines discrete ordinates methods in angle with a discontinuous

finite element scheme in space. Although there are restrictions on the

triangular mesh, TRIDENT may be applied to irregular domains such as a

hexagonal mesh. The computer run times are greater by a factor of 2 or 3

than those for a conventional discrete ordinates code such as TWOTRAN,

but the increased capability for treating strong heterogeneities and the

flexibility allowed by using a triangular mesh may overcome this dis-

advantage for many applications.

8.2 l] SPHERICAL HARMONICS (PN) METHOD [I] In Chapter 4

we developed a consistent procedure for representing the angular depen-

dence of the flux <p(r,fl) as an expansion in spherical harmonics Y,m(SZ).

This led to a set of equations for the expansion coefficients, which when

appropriately truncated were known as the PN equations or the PN

approximation. Although these equations have been used primarily for

theoretical (i.e., analytical) investigations of solutions of the transport

equation, under certain circumstances they can be used as the basis for

numerical methods for solving the transport equation.

This section demonstrates the formal equivalence”37 between the PN

equations in plane geometry and the discrete ordinates equations with

Gaussian quadrature, then discusses the numerical solution of these equa-

tions.

8.2.1 [I Equivalence of the PN and Discrete Ordinates Equations I] To

demonstrate that the SN equations using Gaussian quadrature are formally

equivalent to the PN_1 equations with Mark boundary conditions, we first

prove that the moments of the angular flux determined with the discrete ,

ordinates equations satisfy the same equations as the spherical harmonics

moments. To this end, we define the discrete ordinates moments for the

angular flux and source as

N

<i>/(X)=27r 2 wmP1(ttm)<P(X,tLm)

m=l

N

§1(X)= 2'” 2 WmP1(tLm)S(X,tlm)

m=l
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SPHERICAL HARMONICS (PN) METHOD 1] 475

and the spherical harmonics moments as

+|

q».<x>=2wf_l d11P1(11)<P(X,11)

Next, multiply the discrete ordinates equations

dtpm L 21’+1 .

nWwrpm-Zj 4,, )arwxnetunflm

by 2'rrwmP,( am) and sum over all m to find

N dwm N

2” 2| wmPKtLmMmqx— +2172. 2 wmPI(1"‘m)q)(-x’p'm)

L 21'+1 _ N

=2r120 4—7, ZWAX) 2_ WmP1(#,..)Pr(tLm)

m l

N

+2w 2:] wmP,( um)s(x,jrm) (8.41)

If we use the definition for q3,(x) and the identity

1+1 1

11P/(Il)=mP/+|(IL)+WPI-i(ll)

then Eq. 8.4] becomes

1+1 d¢1+1 I d‘Pl-r -

21+1 dx +21+1 dx +286")

_ L 21'+1 _ N _

_2'” 2 4'” 2.rl'(pl'('x) 2 wmPl( p‘m)Pl’( p‘m)+sl

I'=0 m=l

(8.42)

This equation holds for 1 =0, 1,2, . . . ,N — 1. But we recall from Section 8.1.1

that N point Gaussian quadrature will integrate a 2N—l degree poly-

nomial exactly. Therefore if 1+ 1' < 2N —l in Eq. 8.42, then

N

2 wmP1(Ilm)Pr(Hm)=f_:ldHP1(11)Pr(H)=$27511’ (843)

m=l

But by assumption, l<N—l and l’<L. Therefore if L<N, Eq. 8.43 is

valid. This restriction on L that the order of anisotropy be less than or
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476 El NUMERICAL METHODS IN TRANSPORT THEORY

equal to the order of the discrete ordinates approximation is very reason-

able in practice. If we now substitute Eq. 8.43 into Eq. 8.42, we find that

the q3,(x) satisfy the same equations as the true Legendre moments <p,(x).

Let us recall that in the PN method, we truncate the set Eq. 8.42 by

assuming

d9)!

3-0 I01‘ [>N

To achieve this with our SN representation, we require

ll"1v(x)=2'" g W,,,P~( um)<p(x,jim) =0

m=1

—that is, we would require the set of {pm} we have chosen to have the

property that PN( p,,,)=0 for all m. But the zeros of PN( II.) are just the

Gauss quadrature points { um} of order N.

Finally we need only recognize that the discrete ordinate representation

of the true vacuum boundary conditions for Eq. 8.41 correspond to Mark’s

prescription for obtaining boundary conditions for the PII, method. There-

fore we have formally demonstrated that

SN discrete ordinates PN_I equations with

equations with = Mark boundary

Gaussian quadrature conditions

Furthermore, if we agree to define <p(x,p.) for itself," as

N

tP(x,l1)= 2 (213,‘ )rmao)

I=0

we can generate the Legendre expansion coefficients q'a,(x), hence the PN

solution using a discrete ordinates calculation. (The same argument can be

used to relate DPN to DSN methods.)

8.2.2 1] Solution of the PN Equations E1 The most common methods

used for a direct solution of the PN equations involve the elimination of

odd-order angular moments to yield a set of coupled-diffusionlike equa-

tions. To illustrate one such approach38 we consider the P3 equations in
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SPHERICAL HARMONICS (PN) METHOD El 477

plane geometry (adopting the notation (pf, = d(pn/dX and E,,=E, —Zs,~)

w] + 2% = S

§¢§+ %<P6+211<P1=0

(8.44)

%<P5+%<P’i+2,2¢2=0

g‘Pé + 213% = 0

If we define

(D0 = W0 + 2% and (I)! = ‘P2

we can rearrange the P3 equations into the form

— DI(I>(’,’ +Eail>o= S+2§Iaq>l

- D,<I>;' + ad), = - g s+ gzaoo

where we define

Dl=(32r1)—l’ D2=(3/7213’) a=%212+§2a

But these are simply two coupled diffusion equations that can readily be

solved with standard diffusion computer codes with appropriately defined

diffusion coefficients. Unfortunately, this method cannot be applied in

two-dimensional geometry because the resulting equations cannot be re-

duced to a second order equation in one moment (or a linear combination

of moments such as (Do above). However if one is willing to include the

extra second order derivative terms as source terms within a source

iteration solution technique, this problem can be avoided. In fact, this

approach forms the basis for a second method for solving the PN equa-

tions.39’4°

In the latter approach we do not attempt to derive diffusionlike equa-

tions for one moment alone. Again we illustrate the method with the P3

equations (8.44). We begin by guessing an initial solution, (1)30), <p§°> (the

odd moments are not computed). The following steps are then performed

in an iterative fashion. (i) First differentiate the odd moment PN equations

[the second and fourth equations in the set (8.44)]. (ii) Eliminate the odd

moments from the differentiated equations by using the equation for the

preceding moment. (iii) Solve the resulting diffusionlike second order

equations for the even moments by treating all unknown terms as source

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



478 [:l NUMERICAL METHODS IN TRANSPORT THEORY

terms. (iv) Continue this procedure until the even moments converge.

To be more explicit, step i yields for the P3 equations (8.44):

§<P§+§<P6+28Pl =0

hi’ +213<P3=0 (8.45)

But (p; in the first of these equations can be eliminated in Eq. 8.44

‘Pi = S _ 211%

and therefore step ii has been completed. We now have

%<i>;+-;<ps+E..(S—E.%)=0

or, rearranging,

_ i<1>6+2n2w>0= i‘Pg‘l'Ens

which is the desired second order elliptic equation for qao. This may be

solved for (p0 using a standard diffusion theory computer code. Note that

we have included (p; in the source term, since it is known either from the

initial estimate <p§°> or the previous iteration. The next step is to solve for (p;

in the third of Eqs. 8.44:

<p;= —%(%¢1+2.2<p2)

and then substitute for (pi from the first equation in this set

‘P3 = — figs—20%) + 212%)

This is now used in the second of the differentiated equations (8.45) to

obtain

_ TIP; + 3213212932 = _ T2138 + ézflzalpo

which may be solved for <p2. Since this is the last of the P3 equations, we

repeat the process until (P0 and g); converge to within some prescribed

precision.

The attractive aspect of this scheme is that it can be applied to the two-

and three-dimensional spherical harmonics equations. Interestingly

enough, these spherical harmonics equations are so complicated that a
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THE FINITE ELEMENT METHOD [1 479

computer program has been used to differentiate the equations and per-

form the algebraic manipulations to arrive at the equations for the even

flux moments.40

8.3 [1 THE FINITE ELEMENT METHOD E1 The finite element

method is the name commonly applied to the expansion of the solution to a

set of partial differential equations in a set of local basis functions. Either

variational or weighted residual methods are then used to arrive at a sparse

matrix representation of the original problem. This method has received

attention recently as a promising alternative to conventional techniques

such as spherical harmonics or discrete ordinates for solving the transport

equation. We have already considered one application of this approach

when we expanded the spatial dependence of the angular flux in finite

element basis functions to develop an alternative to the conventional finite

difference—discrete ordinates equations. This section examines the more

general application of finite element methods to both the space and angle

variables in the transport equation.

The finite element method was first applied in the mid-1950s to a variety

of problems in structural mechanics. Since that time finite element

methods have been developed for such diverse areas as fluid mechanics,

heat transfer, and neutron diffusion.“"“2

The success of the finite element method may be partially attributed to

its versatility for treating quite general classes of partial differential equa-

tions. However it also presents decided advantages for handling complex,

irregular geometries, and its firm theoretical foundation in approximation

theory guarantees the convergence of the approximate solution in most

applications of interest.“3

The application of the finite element method to transport problems has

been a relatively recent venture. A variety of approaches have been

studied, including finite element expansions in both the space and angle

variables for both the traditional (non-self-adjointf‘“8 and the even and

odd parity second-order forms of the transport equation.”55 The combina-

tion of finite element and discrete ordinates methods was discussed in

Section 8.1.4. These activities have led to the development of several

production level and research transport computer codes based on such

methods (e.g., ONETRAN,2l TRIDENT,20 ZEPHYR,56 FENT,so AND

FTRAN“).

This section investigates the application of finite element methods in

space and angle variables to both the first and second order forms of the

transport equation. We develop most of our analysis for the more conven-

tional first order form, then contrast the differences that arise when

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



4m 1] NUMERICAL METHODS IN TRANSPORT THEORY

applying finite element methods to the second order, even-parity transport

equation. We conclude with a summary of the relative advantages and

disadvantages of finite element methods when compared with the more

traditional finite difference—discrete ordinates approach.

8.3.1 [1 Application of Finite Element Methods to the First Order Form of

the Transport Equation 1:] The finite element method is always applied to

an integral formulation of the original partial differential equation of

interest. For example, one might introduce the finite element method as a

suitable trial function in a variational principle having the original equa-

tion as its Euler equation. Alternatively, the solution of the weak (or

integral) form of the partial differential equation can be expanded in a set

of finite element basis functions.

For the case of a self-adjoint system such as the one-speed diffusion

equation, these approaches are equivalent.57 However since the first order

transport equation is not self-adjoint, there is no extremum principle

available. We have no choice but to apply the finite element method to the

solution of the weak or integral law form of this equation. By way of

contrast, the second order transport equations (even and odd parity forms)

are self-adjoint, and one can proceed from a variational principle.

Integral Law (or Weak) Form of the Transport Equation [1 Let us first

consider the derivation of the integral law corresponding to the first order

transport equation.“48 The time-independent, one-speed form of this

equation is as follows:

a 'V<p+E,(r)q>(r,§Z) = fdQ’2,(1-,Q'-Q)1p(r,§2’)+s(r,§2) (8.46)

where, for simplicity, we assume inhomogeneous boundary conditions:

<p(rS,Q)=<p0(r,,I2), fl-é:<0. The following notation is introduced for

convenience:

R = spatial domain

4n = angular domain

V=phase space domain R X 4n

8R = boundary of R

T = boundary of V= 8R >< 4w

I‘1 = outgoing (or ingoing) boundary [i.e., all (r, O) E T

such that Q -éI 20]

For the general analysis that follows, we introduce the space of allowable
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THE FINITE ELENIENT METHOD El 481

solutions:

HE: [¢(r,§2):real tl/(LQ) such that drd§2[|\11|2+ |V‘I'|2] < 00}

v

This class of functions is sometimes referred to as an “energy” or

“Sobolev” space. The specific definition of the space is designed to ensure

that phase space integrals that arise in the subsequent analysis will exist.

Later we specialize this space of functions to be a finite element subspace,

for example, the space of linear, piecewise polynomials defined on the

interval xE[0, l] and [LE[— 1, + l].

The derivation of the integral law is actually quite simple. We multi-

ply Eq. 8.46 by an arbitrary \l/(LSDEHE and integrate over the phase

space V:

ff drdo¢(r,s‘z)[s'z-v<p+>3,<t>]

V

= ffVdrd§2tp(r,§2)[ fdo'2,(r,o'-o)<p(r,o')+s (8.47)

The general idea now is to manipulate this equation into a form that

includes the boundary conditions by using integration by parts. To sim-

plify the notation, we define the real inner product

(fig); ffydrdt‘tftnfugtrft)

where f and g are two elements of HE. We also define an inner product

that characterizes the boundary:

<f,g>E ffrdsdfifi-aflnfugtrsfi)

as well as inner products characterizing incoming (1“) and outgoing (I‘+)

directions

<r.g>E ffrtdsdfllfl-é.lf(r.,fl)g(r.,§l)

It should be noted here that < f, g>=< f, g) + —< f, g>_. We will also define

the collision operator K

K0 EZ,(r) ° —fdSAZ’Es(r,SAZ’-SAZ) O
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482 1:1 NUMERICAL METHODS IN TRANSPORT THEORY

Using these definitions, we can now rewrite Eq. 8.47 as follows:

(Q -v@.¢)+(1<¢.¢)=(s.¢) (8.48)

lf we now notice that

\l/Q'WP: V-§l(w)—¢V'§W

we can integrate the streaming term in Eq. 8.48 by parts

<t‘r-v¢.¢)=<¢.¢>—(¢.tz~w)

so that Eq. 8.48 becomes

—(<p.§r-v¢)+<q>.¢>+(Kq>.¢)=(s.¢) (849)

But now we note that the boundary term can be decomposed as

<<PHP>=<(P,¢>+ —<(P,¢>_

We are given that <p(r,I2)=<p0(r,Q) on I“, or

(WP)- = <<Po,\l’>-

Therefore we can rewrite Eq. 8.49 as follows:

—(<p.fl w) + <<p.¢>. +(K¢,¢) =(s.¢)+<<po.¢>_

This is known as the integral law or weak form57 of the transport equation

(8.46). More precisely, we identify the integral law or ‘weak formulation of

the transport equation as follows: find a function tp(r,fl) E H E such that for

all \l/(r, (2) E H E

—<<z>.Q-V¢)+<q>.l>.+(K<p.¢)=(s.¢)+<<po.¢>_ (850)

To demonstrate that Eqs. 8.50 and 8.46 are equivalent, assume that a

solution q">(r,SZ) has been found to Eq. 8.50. Now integrate Eq. 8.50 by

parts to find

(Q'V¢r¢)+(K¢r¢)+<¢r¢>— =(s’¢)+<q70r¢>—

Since this equation is valid for all II! E H E, it must be valid for the subspace

HEB that consists of all #16 HE that vanish on I“:

(f2-v¢+K¢-s,¢)=0 for all tier];
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THE FINITE ELEMENT METHOD E] m

But it is arbitrary; therefore,

A

rz-v¢+ K¢=s (8.52)

which, of course, is just the original transport equation (8.46). To retrieve

the boundary conditions, we can substitute Eq. 8.52 into Eq. 8.51 to find

<¢TlPo,\l/>_=0 forall \l/EHE

But for this to be valid in general, it must hold that d3= qao on I‘". Thus the

equivalence of Eqs. 8.50 and 8.46 has been demonstrated.

Treatment of Boundary Conditions I] It is important to note that the

boundary condition q>= (p0 on I“ is included in the integral law (Eq. 8.50).

It will be naturally satisfied by the solution tp(l', 9), even though we did not

explicitly require the entire solution space HE to satisfy it. This is an

example of a natural boundary condition. Such boundary conditions are

not imposed directly on the space of solutions, but rather result as a

consequence of the integral law itself.

If we had not integrated Eq. 8.48 by parts, our integral law would have

read: find q>(r,SZ)E H If such that for all iIl/(r, S2)EH 1?,

(ti-vq»,¢)+(1<¢.¢)=(s.¢>

where we have now restricted our allowable space of solutions to those (p

in H E that also satisfy the boundary condition, q>= (F0 on I“. In this case,

we refer to the condition as an essential boundary condition. This formula-

tion of the finite element method will not be considered further.

This is a general feature of the finite element method. An integration by

parts is usually performed that will lead to natural boundary conditions.

As we see when we analyze the second order form of the transport

equation, the use of a variational principle reduces the order of the

derivatives in addition to producing boundary terms.

It should be stressed that in the application of finite element methods to

the first order form of the transport equation, all boundary conditions are

treated as natural boundary conditions. That is, one simply substitutes the

expression for (p on 1‘— into the surface term

<lP,\l/>- = [fr/$11919entrants?!)

If the boundary conditions are implicit, one substitutes the relation be-

tween (p on I" to <p on 1“ into <<p,¢>i. This becomes more evident when
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484 1:] NUMERICAL METHODS IN TRANSPORT THEORY

we consider the specific case of one-dimensional plane symmetry in the

next section.

The Approximate Integral Law CI The integral law is now in a form that

is amenable to approximation by way of the finite element method. That

is, rather than attempting to find a solution <p(r,fl) of Eq. 8.50 in the space

HE, we seek the solution in a “finite element” subspace S" CHE. More

specifically, we will seek a solution <p"(r,fl)ES" such that Eq. 8.50 is

satisfied for all \Ph(l',fl)ESh. Here, h is a parameter that depends on the

mesh spacing to be used in the approximate solution; S" is a specially

constructed subspace with basis functions il/i"(r,fl), i= l,2,...,N, where N

is the dimension of S" (typically the number of nodes in the mesh). Details

on the actual construction of such a subspace are deferred to the next

section. However, it is worthwhile to note here that the basis functions are

local in the sense that

ffVdrdQ¢i'-(,,QW(LQ)

is nonzero only when the nodes i and j are close together.

When we restrict ourselves to this subspace, we arrive at an approximate

form of the integral law: find <p"(r,Q)ES" such that for all \p"(r,fl)€S",

—(<P",Q'V¢")+<<P",\P">++(K<P",¢")=(s,¢")+<¢o,¢">_ (853)

Since S" is finite dimensional and <p" E S", we can expand q)" in the basis

functions

A N A

<p"(r.m= 2] wig-"0.9)

j=

and it is sufficient to require Eq. 8.53 to hold for all il/i"(r,§l), i = 1,2,...,N

to ensure that Eq. 8.53 is valid for all \P"(r,SZ)ES":

N A N N

—( 21¢,- m-wf) +< Elwin-o. + (K Elqwm-h)

J: J“ J=

= (Sflf’ih) + <%’¢ih>-

If we take the summation outside of the integrals, we arrive at the matrix

system

Arp=S (8.54)
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THE FINTTE ELEMENT NIETHOD [:1 485

where

AF —( ,-",§l-v¢.")+<¢/,¢.">. +(K8",¢.-")

_ " __ ‘ , " " ,» h h

_ ffydrdrzim o v+z,).p,"+ ffPdSdQQ we,

- drdfhpihfdfi’ilsfi,Q'Tlhly'lrfl’)

V

S,-E(s,¢,")=ff drdQs(r,§Z)¢/'(r,§l)

v

<P=¢<>l(<Pi,¢2,---,<P~)

At this point we might note that the construction of the subspace S" has

not entered the discussion, and Eq. 8.54 could very well be applicable to

any Galerkin formulation. However, it will be demonstrated that choosing

a finite element basis considerably simplifies the calculations. More im-

portant, it will result in convergence to the actual solution as the mesh

spacing is refined (Ii—>0). That is, if q>(r,fl) is the actual solution, then

lim,,_,oq>"(r,fl)—><p(r,fl) (in a suitable measure or norm).

Convergence of the Finite Element Solution [1 Let us briefly examine the

convergence properties of the finite element method.58 Although the

following remarks have been rigorously proved only for second order,

self-adjoint systems (e.g., the one-speed diffusion equation), there is

sufficient numerical evidence to indicate their more general validity for the

first order, non-self-adjoint form of the transport equation.

In general, if the finite element method is applied to a second order,

self-adjoint operator L [e.g., L= —(d/dx) D(x) (d/dx)+Ea], it can be

shown that the L2 error e in the approximate solution <p"(r),

1/2

¢= [ fd3rl<i>(r)—<P"(r)|2]

is less than the L2 error for any other approximation that can be formed

within the finite element subspace S"

[ ld3'l<P(r)—<P"(r)l2]1/2< [ fd3r|¢(r)—X"(r)|2]v2, for all x" ES"

(8.55)
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486 [l NUMERICAL METHODS IN TRANSPORT THEORY

But now we note that the finite element subspaces under consideration

consist of piecewise polynomials. Therefore we can appeal to approxima-

tion theory to ascertain the degree to which the space of piecewise

polynomials S " can approximate an arbitrary function f (r). In particular, if

f(r) has a square-integrable gradient over the domain R, there exists an

approximation f"(r)E S " such that

[ fdsrlflr)—f''(r)|2]l/2<ch'‘+'

where h is the mesh spacing, k the degree of the piecewise polynomials,

and c is a constant independent of h or k. For example, k=l for linear

piecewise polynomials, and therefore for this case

[fd3rlf(r) —f"(r)|2]l/2 <ch2

But from Eq. 8.55 we know that rp"(r) is at least as close to the true

solution rp(r) as this particular approximation. Therefore

[ fd3rl<1>(r)—(P"(r)12]l/2<Chk+'

and as h—>0, we conclude that (p"(r)——>(p(r) (in the L2 measure).

These remarks have yet to be proved for the first order transport

equation, but numerical results‘fl'48 substantiate the following claim for the

error in the approximate solution of this equation:

A A A d3rdfllq>(r,fl)—<p"(r,fl)|2 <ch"+'

V

Therefore the finite element method yields the “best” possible solution

from the space of allowable trial functions. Since approximation theory

tells us that the space of piecewise polynomials is capable of approximat-

ing the unknown solution to any degree of accuracy, we are assured that

the finite element solution will be at least as accurate.

Specific Application to One-Dimensional Plane Geometry I] To illustrate

this approach, we apply the finite element method to the one-dimensional

transport equation in plane geometry. For simplicity, we consider the
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THE FINITE ELEMENT METHOD [1 487

transport equation for a homogeneous slab on the interval 0 <x < l

L +

rig—Z + E,(X)<P(X,H) = I§0(l;—1)2,,(x)1*,(11)f_l ldp’P,(;1’)<p(x,p')

+ s(x,p.) (8.56)

We chose an inhomogeneous boundary condition at x = 1, <p(l, p.)= <p0(x, u)

for n<0, and a reflecting boundary condition at x=0, <p(0,p.)=(p(0, — 11.).

Figure 8.24 depicts the x-u mesh structure. The finite element subspace S'.

is spanned by the basis functions rp,"(x,p), i= 1,2,...,N. The subscript i

refers to a particular space angle node.

We now multiply Eq. 8.56 by an arbitrary 111,-"(x, p.) and integrate over the

x—u phase space:

foldxfjl |d#¢.~"(X,11)[ 11%? +2.80]

— L'dxf_*l'dit."(x.i)§o(%)amtnfi'di'mwtxn')

=fldxf+ldll¢ih(xvll)s(xrli) (8'57)

0 —I

We can integrate the streaming term by parts to produce the boundary

Outgoing

Incoming ooundarV

boundary

‘l—> x

Outgoing

boundary

Incoming

boundary

Physical domain Analytical domain

Fig. 8.24 l] One-dimensional plane geometry.
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488 El NUMERICAL METHODS IN TRANSPORT THEORY

term:

It

| +1 ‘h 92 _ _ l +l f0dxf_l dtt ittax— IOdXLI dun—ax when)

l x:

+ [:1 dlLP[‘P(X,H)\P,-h(x,l1)],_(l, (858)

We can identify the second term in this equation as the boundary term

(BT) and evaluate it at the endpoints x= i l:

BEL: IdF‘FWLIWKLM—q>(0,ti)¢i"(0,ti)] (8.59)

As in the more general case discussed in the previous section, we can now

substitute the boundary conditions into Eq. 8.59. The boundary condition

at x= l is easily included:

BT= f° dPWoUJDtl/i'n’ll) + f'dtwttut-"(m

_, 0

incoming term (known) outgoing term (unknown)

0 l ‘ (8.60)

— L Idtt lL<P(0’ll)*l/ih(0,l1) — [0 all tMMN/‘(Q l1)

outgoing term incoming term

The last two terms in this equation are related by the reflecting boundary

condition at x =0. However it is not apparent how the reflecting condition

should be included in Eq. 8.60. Thge; are ‘two possibilities: ei liminate

tp(0, Etintheflthirdgterm of Eq_._<8.’60 or eliminate (p(0,;i) in the fourth term,

using q>(O,;t)_-—;_(p((_),: it). Let us proceed by noting that the actual'bohr'fdary

condition sets the incoming angular flux at x=0 equal to the outgoing

angular flux for the angle corresponding to spectral reflection. Therefore

we should use (HOLE); 2(0, — (5)4120, and eliminate the incoming flux at

x=0 in terms of the outgoing flux: M ' if i "

BT=f° dmttpo(1,,i)¢,"(1,,t)+f'dttMLuN/‘(lw

_| 0 .

—f_01dllP1P(0,H)¢.-h(o,ll)i'fOIdIIWP(O,H)tI/1h(0, —_H)

where the range of the integration of the last integral has been transformed

from it. to —p.. It can be shown that this choice that corresponds to

applying {He—“reflecting boundary condition in the direction of particle
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THE FINITE ELEMENT METHOD 1:1 489

motion results in an effective source of particles for the nodes on the

incoming boundary because of the corresponding nodes on the outgoing

boundary. If we had chosen the alternative method to incorporate the

reflecting boundary conditions, the matrix elements would have repre-

sented a negative source for the outgoing nodes because of the incoming

flux, and this would lead to an ill-posed problem. Numerical results

confirm that this approach yields incorrect results, probably because the

natural reflecting boundary condition is imposed against the direction of

particle motion.

The calculation of the remainder of the terms in Eq. 8.57 are straight-

forward. If we expand <p"(x,p1) in terms of the finite element basis func-

tions

N

<P"(x,11)= Zloty-"(811)

,:

and substitute this expansion into Eq. 8.57, we arrive at a system of

algebraic equations

N

2 i=l,2,..-,N j=l

f .Xf ' a f | ( j

- f_01d#11¢f(0,11)t1g"(0,11)+ (01411111480, moth-"(0.11)

1 +1 h_ L 21+1) 1 +1 h

+f0 dxf_ldH21\h-"'-h 12(——, f0 dxaif dlHh-Pr

=0 -1

XL: 1.111419%,

s.-= fo‘dxfjl 1d11S(X,11)1P,-”(X,11)_fidllwflhwwoflnll

Therefore we have derived a system of algebraic equations that can be

solved by standard methods for the expansion coefficients (pj. Before we

consider the construction of the finite element subspace S" and the

solution of this set of equations, we develop the alternative formulation of

the finite element method using the second-order form of the transport

equation.
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490 El NUMERICAL METHODS IN TRANSPORT THEORY

8.3.2 [1 Application of Finite Element Methods to the Second Order Form

of the Transport Equation E] It is possible to give an integral formulation

of the second order transport equation in terms of a self-adjoint variational

principle. Before we demonstrate how finite element methods can be

applied to this formulation, we present a brief derivation of the second

order form of the transport equation.59

Derivation of the Second Order Form of the Transport Equation [1 We

begin with the one-speed transport equation

o-vq>+2,¢= fdr‘z'2,(r,r‘z'-Q)¢(r,r*r)+s(r,fz) (8.62)

where, for convenience, we assume vacuum boundary conditions on the

boundary 813, <p(r,fl)=0, rEBR and SZ-és<0. Since this equation also

holds for —SZ

4‘: 'V<p+2,<p(r, -t‘z)= IdQ’ESU, -s‘z'-Q)q>(r,r‘z')+s(r, 42)

(8.63)

it is apparent that we can add and subtract these equations to obtain

s‘z-v[<p(r,r‘z)-<p(r, -r‘z)] +2,[<p(r,t‘2)+q>(r. 42)]

= f d912,“? -r‘2)+2,(-r‘r -r‘i)]¢>(r, r‘r)+ [s(r, s‘z)+s(r, -fz)]

(8.64)

and

Q-vwomwo. —Q>]+E,[¢(r.Q)—<p(r. 41)]

= fan/[2,62-Q')-2,(-fz'-n)]q>(r,fr)+ [s(r,r‘z)-s(r, -n)]

(8.65)

We now introduce the following definitions

il/(r, Q = % q>(r, Q) + q>(r, — Q) ], even-parity flux

) [

X(r, Q) = % [<p(r, {2) — (p(l‘, — f2) ], odd-parity flux

) l

l l
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THE F INIT E ELEMENT METHOD E] 491

so that we can identify Eqs. 8.64 and 8.65 as two coupled equations for the

even- and odd-parity fluxes, \I/(Lfl) and x(r,fl) (noting that the integral

vanishes if it is odd):

s‘z-vx+2,¢= fdQ/2,+(r,s‘r-s‘z)¢(r,s‘2')+s+(r,o) (8.66)

s‘z-v¢+z,x= fdfl’E;(r,Q’-Q)X(r,fl’)+s_(r,f2) (8.67)

We now obtain second order equations for iI/(r, f2) and X(r, Q) separately.

First rearrange Eq. 8.67 as

2,X- fdr‘z'zs-(r‘r-s‘nxufz') = s— -r‘z ~V¢ (8.68)

Consider first the case that E;(r, (2'42) =0. Then we can immediately solve

for

X(LQ)=2,"(r)[S_(r,§Z)—Q'V¢(BQ)]

This expression for X(rfl) can be substituted into Eq. 8.66 to yield

-n-v[2,-'t'2-v¢] +2,¢=fdfz'2;(r,si'-fz)¢(r,fz')+s+ -§z-v[2,- r]

(8.69)

Therefore if there is isotropic scattering (or no odd moments in the

scattering kernel), the second order, even-parity transport equation takes

the form of Eq. 8.69. A A

In the more general case in which E; (r, S2’ ~82) is nonzero, we must

explicitly invert the operator

Go 52,0 —fdfZ’E;(r,f2"Q)°

so that

x=G—'[s—-s‘z-v¢] (8.70)

To this end, consider the action of G on an arbitrary function f (r, fl)

Gf= 2,(r)f(r,§z) - fdfl’Z;(r,Q’-Q)f(r,§2’)Eg(r,§Z) (8.71)
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492 El NUMERICAL METHODS IN TRANSPORT THEORY

If we now expand the scattering kernel in spherical harmonics [noting that

E; (r, SI’ ~52) is an odd function of 87-9]

— A, 7 0° A, A

2. (r8 -8>= 2 (whimntn 8)

I odd

and use the addition theorem for spherical harmonics, Eq. 8.71 becomes

00 1

2J- 2 2 Eimxmtmfdfl'Y;.<fr>f<r.tr>=g (812)

[odd m=—l

In the usual way we can multiply by Y,f,,(§2), integrate over angle, and use

orthogonality to solve for

fdfv(r.8>m(m= [E.—E./]" fdflghfhYMfl)

This can be substituted back into Eq. 8.72 to find

I A A A A

2 Y/m(fl)fdfl' Ylt..(fl’)g(r,fl')

m=—I

. 1 . 1 °° 2, )

r,fl =-— r,fl +—— s

f( Erg( ) 2! Igd(zt_zsl

Therefore we can identify our inverse collision operator as

1 1 °° 2

_lo=_o _ "I

G 2, +2 2(2-2)

I s!

1

2 [n.(mfdn' mm o

(8.73)

Finally, substituting Eqs. 8.73 and 8.70 into Eq. 8.66, we find the more

general second order, even-parity form of the transport equation

-r‘z-v[2ls‘z-v¢l +2,¢= fd0’2,+(§2’-Q)¢(r,§2')

f

l

+Q-V[fdfZ’g(§Z’-Q)Q"V¢]+s+—0-V[ 1

-i‘2-v dr‘z'g(o'-r‘z)s-(r,s‘z') (8.74)

U l

where

_ l °° 2.10) ’ A . 5,

8",“ ‘m- m Yemen)
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THE F INITE ELEMENT METHOD El 493

The boundary conditions can be transformed in a very similar manner.

In particular, vacuum boundary conditions for the incoming boundary

fluxes can be expressed in terms of the even- and odd-parity fluxes as

A

<p(r,,r‘2) = ¢(r,,f2) + X(r,, f2) =0, n e, < 0

But the vacuum boundary condition can also be written as

A

<1>(r.. — fl) = ¢(r.. fl) — X(r,, f2) = 0, n 4, >0

Therefore, using our earlier evaluation of the inverse G _', we can rewrite

the vacuum boundary condition for the even-parity flux alone as

¢(r,,r“1):z,-'[s-(r,fz)—fz-v¢(r,ri)]

A

x f dr‘z’g(r,r“z'-r‘z) [s-(r,r‘r)-r‘z'-v¢(r, 6)} =0, n-azo

The Variational Principle Associated with the Second Order Fomt El It can

be shown that a functional that yields Eq. 8.74 as its Euler equation is59

F[1p]=ffdrd§2{2f'[fl-V111]2+2,¢2—rI/IdQ’ZflQ-QN/(Q’)

+ [r‘z-v¢]fdfz'g(ri'-Q)fz’-v¢—2¢s+ -2>:,— s—fz-vip

—2r‘z-v¢fdr'rg(r‘2'-r‘z)s—(r‘r)} +2ffr+dsdfhl2

where we have assumed vacuum boundary conditions on I“. [If reflecting

boundary conditions are also imposed, the surface term is only over that

portion of the boundary (if any) where vacuum boundary conditions

apply.] The vacuum boundary conditions appear as natural boundary

conditions, and reflecting boundary conditions appear as essential

boundary conditions.

The finite element method can be applied by expanding the even-parity

flux in terms of the finite element basis functions

N

¢<r.m= ,2] was!)

1:

The functional F [ii] is then minimized with respect to variations in the

expansion coefficients rpj, j=1,2,...,N to arrive at a matrix equation for

<1>=¢Olls>1,<1>2,---,<P~l

A¢=S
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494 [:1 NUMERICAL METHODS IN TRANSPORT THEORY

where the detailed definition of the matrix elements are left to the refer-

ences.5°'5' If it had been necessary to start with the integral law form of the

second order, even-parity transport equation, we would have obtained the

same system of equations in the end by following a procedure similar to

that in the preceding section. Thus the variational approach and the

integral law approach are equivalent for the second order, self-adjoint

form of the transport equation.

Therefore we have arrived once again at a system of algebraic equations

that represents the original transport equation on the finite element sub-

space S". We now turn our attention to the construction of this subspace

and the solution of these equations.

8.3.3 El Construction of the Finite Element Subspace E] To illustrate

how to construct a suitable finite element subspace S h, we provide specific

details for one-dimensional plane geometry. In general the finite element

method is employed in a nodal fashion. That is, the expansion coefficients

for the solution are nodal parameters that are typically the value of the

solution or one of its derivatives at a node of the space angle mesh. We

speak of a “Lagrangian finite element scheme” as one that employs

Lagrange interpolation polynomials over each local mesh or finite element.

The values of the solution at the nodes are the expansion coefficients,

hence the unknowns in the system of equations. We could also employ

Hermite interpolation polynomials on a given finite element mesh; how-

ever in this case each node would include additional parameters represent-

ing the values of both the solution and its derivatives. Lagrange finite

element schemes typically result in continuity of the solution everywhere in

the mesh, although derivatives are generally discontinuous across interele-

ment boundaries. Hermitian schemes typically result in continuity of one

or more partial derivatives everywhere in the mesh.

Since the transport equation is only of first order, one can expect at

most continuity of the angular flux. Even this may be too restrictive for the

angular variable. Therefore the use of Lagrangian elements that preserve

continuity in the solution but not its derivatives would appear to be a

proper choice for transport problems. Lagrangian elements may be de-

termined for a specific element type or may be formulated for multidimen-

sional elements in terms of direct products of two or more one-dimensional

Lagrangian basis functions.

The more general method is to shape the basis functions to the particu-

lar element. For example, a triangular element with three nodes can

uniquely represent a linear polynomial over a two-dimensional surface,

with each node contributing a piece of data. That is, a general linear

polynomial in two variables p(x, y)=ao+alx+a2 y requires the value of

three parameters to be uniquely determined. If the values of the solution at
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THE FINITE ELEMENT METHOD El 495

the nodes of a triangle are taken to be the three parameters, the linear

polynomial is uniquely determined within the triangle. With Lagrangian

elements, where the nodal parameters are the values of the unknown

solution, a convenient basis for a triangle consists of three linear polynomi-

als, each of which is unity at one node and zero at the other nodes. This

will result in the expansion coefficients being identical to the value of the

solution at the nodes. This concept of choosing a basis consisting of

functions that are unity at a particular node and zero at all other nodes is

typical of Lagrangian elements, and it is used for the direct product basis

functions discussed below as well as for quite general multidimensional

schemes. Section 8.1.4 gave explicit formulas for the three linear polynomi-

als over a triangle that are unity at one vertex and zero at the other two

vertices. However it should be noted that these particular basis functions

are discontinuous across element boundaries because common vertices of

different triangles have different solution values for each triangle, whereas

the usual Lagrangian triangular element scheme employs continuous func-

tions.

For multidimensional elements one can also formulate basis functions

that are direct products of simple one-dimensional basis functions. This

can be illustrated for the x—p. mesh for the plane geometry transport

equation. Figure 8.25 illustrates a typical mesh and indicates the global

numbering for the nodes. Let us denote the global numbering index as n

and the spatial and angular indices as i and j, respectively. For example,

n = 12 corresponds to i =2 and j = 5 in Figure 8.25.

A basis function for a global node n is then defined as a direct product

of one-dimensional basis functions for the corresponding spatial node i

and angular node j:

¢”(X,tt)=¢.-(X)¢,-( IL)

The one-dimensional basis functions are the standard “tent” functions (see

Figure 8.26), which are expressed as follows:

X—xi—l

———, x,-_|<x<x,-

xi_xi—l

, = X --X

‘k(x) lL, xi<x<xi+l

xiH—xi

. 0, otherwise

' f'L—Pj—l

———, 11-- <H<H

18-8-1 ’ ' ’

\lg-(11)= 1841"!‘

—, ti<tt<tl~

Py'H—Py‘ J 1+]

. 0, otherwise
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496 El NUMERICAL METHODS IN TRANSPORT THEORY

l

- +1 A

“7 7 14 21 28 35 42

e 13 20 27 34 41

F6

5 12 19 26 33 40

“s

u,=+0 4 11 18.l25 32 39 x

113=_0 3 10 17"24 31 as

2 9 1s 23 30 37

#2

1 8 1s 22 29 36

11, — —1 ‘-

X2 x3 = x2) x4= x2) X5 x6 = l

x, = 0

Note:

_:_ Discontinuous angular

elements at u = 0

+_ Discontinuous spatial

elements at .\' = xD

Fig. 8.25 [1 Nodal numbering.

\11

w

x 11

x'-_1 XI: x54.‘ “j_1 11]’ Fjfl

Fig. 8.26 1:1 “Tent” finite element basis functions (continuous).

Then 111,,(x,11) is easily expressed for each quadrant of the X—IJ. finite

element mesh (see Figure 8.27).

A convenient consequence of the direct product basis functions is that

the components of the matrix elements AU are separable into products of

spatial and angular integrals. For example, the contribution to A,j in Eq.

8.61 due to the streaming term becomes

1 +1 311/,- _ l d¢1x<x> +1

fodx l ‘ninja-[0 dx—Ttlj-AML dual/1.0014101)
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n

Hj+1

“i

(i, j)

111 lV

Iii-1 x

Xi_1 Xi xi+1

Fig. 8.27 El Direct product basis functions; Irv-(x,y) is as follows:

,p'j(x,II)=(fii)(fifl—_ll), (,MIJEI

xi+1_xi Fwd—"j

(x—xI-_I)( Pym-ll) (Linen

x|_xi-l f‘j+l P7 ,

""‘H r5“) eIII

(Xi—xt-|)(1‘7_P7-| ’ (x’ll)

(x"+'_x)( V5“ (MOEIV

xi+l_xl l‘j—I'lj—l

where ix is the x node corresponding to node i. This greatly simplifies the

calculation of the integrals because the spatial and angular integrals may

be performed independent of one another.

Although the ranges of integration of the integrals in Eq. 8.61 for AIj are

given over the full spatial and angular ranges, in fact the local definition of

the basis functions greatly reduces the range of integration, and the

components of AI j generally vanish if nodes i and j are not adjacent (for

linear elements). There is one notable exception, however. The scattering

contribution to AI]-

L 21+1 1 +1 +1 ,

2 dxzsyd’ix‘k/xjl] dp'PIlPHLf—l Pll‘pjn

[=0
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498 El NUMERICAL METHODS IN TRANSPORT THEORY

is a product of integrals of basis functions rather than an integral of a

product of basis functions. Therefore scattering couples all the angular

nodes (although the spatial coupling is unaffected). This would be ex-

pected on physical grounds, since there is a finite probability of scattering

from one direction into any other direction.

One can also define higher order basis functions, either as a higher order

polynomial over a general element such as a triangle or as a direct product

of higher order one-dimensional polynomials. To construct higher order

elements, one introduces additional nodes (e.g., one additional node for

quadratic basis functions) and defines the higher order polynomials over

several nodes (vs. two nodes for linear elements). This results in a coupling

of nodes that would not be coupled by linear elements. This is not a

concern with the angular elements because all nodes are coupled by

scattering in any event. But this increased coupling does present severe

problems if higher order elements are used in space.“8 Figure 8.28

illustrates quadratic basis functions on a typical mesh, and it can be seen

that a quadratic basis function can interact with its two nearest neighbors

on either side. For cubic elements, the interaction would extend over the

three nearest neighbors on either side. This increased coupling is undesir-

able because the bandwidth of the coefficient matrix A is increased in

proportion to the increased spatial coupling. For example, linear elements

will cause three columns in the x—p. plane to interact (all angular nodes

interact because of scattering); therefore the length of a typical row in the

matrix A is 3N“, where N is the number of n nodes. Since there are

0 P. . -

NX X N“ equations (rows of the matrix A), one must store 3Nx>< Ni matrix

1 - -— — -— -— -— — — — — 1

WW)

I | 6,48)

w,-_, (x) l l

0

_ X

‘xi—2 xi—l Xi xi+1 ‘in

Internal nodes: x,-_,, xi“

Principal nodes: x,‘_2, x,-. X,”

Fig. 8.28 El Quadratic basis functions, where \14-(x) are the separate basis func-

tions for discontinuous elements at x = x,~.
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THE FINITE ELEMENT METHOD El 499

elements, regardless of the degree of the angular element. For quadratics,

this becomes 5N, X N“2 and for cubics, 7N, X Ni.

Although the matrix elements are relatively simple to compute analyti-

cally, the sheer number of integrals for even moderate sized problems

forces one to simplify the work even further. For example, all integrals can

be done on the standard interval [— 1, +1] by Gaussian quadrature, then

mapped into the particular mesh interval by a simple linear transforma-

tion. For an integral over the interval x,- to xi+l (or p, to ill-+1) one would

employ the transformation

x=%(xi+l_xi)€+%(xi+l+xi)

so that

f"'dx¢,(x>¢...(x>=to.“*Jllldg‘l’almblg)

l

or for an angular integral

fHHdlLI-“l/A 1044+ 1( ll)

=%(l1'i+l_lLi)f_:‘d€[%(lLi+1-p‘i)£+%(l"'i+l+lli):l¢a(€)¢b(£)

Here 41,,(5) and ipb(§) are generic basis functions that can be used to

construct all other finite element basis functions. There are only k + I such

basis functions for the entire system, where k is the order of the polynomi-

als used as finite elements.

8.3.4 [I Discontinuous Phase Space Finite Elements l]

Discontinuous Angular Finite Elements [1 In plane geometry it is well

known that the transport equation may have discontinuities in the angular

flux at p=0 at interfaces or boundaries. In fact this behavior at p=0 was

the primary motivation behind the double PN method and the double SN

quadrature sets introduced earlier. In each of these cases the discontinuity

at ,n =0 was avoided by considering separately the flux in each half-range,

—l<p<0and0<p<l.

We now consider a method for handling this discontinuity within the

framework of the finite element scheme.48 Since the finite element scheme

we have developed thus far assumes continuity of the angular flux in both

space and angle, some extensions of our earlier treatment are necessary.
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500 E] NUMERICAL METHODS IN TRANSPORT THEORY

For the angular variable, continuity is not required during the derivation

of the integral law. However use of Lagrange basis functions (see Section

8.3.3) will result in an approximate solution that is continuous throughout

the angular domain, even though the actual solution may be discontinuous.

Thus the actual discontinuous solution is being approximated by a con-

tinuous function, and poor results will probably occur, particularly near

interfaces or strong absorbers.

But the presence of an angular flux discontinuity in the angular domain

does not affect the validity of the integral law formulation of the transport

equation in one-dimensional plane geometry. Analytically this is expected

because the transport equation in plane geometry (or orthogonal geome-

tries in general) has no angular derivatives; hence continuity of the

solution in the angular domain is not a requirement. Second, the derivation

of the integral law involves (for the angular variable) only simple integra-

tions that are valid in the presence of discontinuities as long as the

integrals are evaluated in a piecewise fashion.

Therefore the use of discontinuous angular elements is simply a matter

of constructing basis functions that are discontinuous at 11=0 (for plane

geometry) and being careful to evaluate the integral in a piecewise fashion.

This is easily accomplished by splitting the basis function at )1 =0 into two

basis functions, one for p.=0_ and the other for 11=0+. Thus there is a

double node at p.=0, as illustrated in Figure 8.25 for a typical finite

element mesh. For a multidimensional problem where two angles are

needed, one could use direct product basis functions of these discontinu-

ous one-dimensional functions.

Discontinuous Spatial Finite Elements El Although analytically the solu-

tion to the transport equation must be everywhere continuous in the spatial

domain, there may be points at which the solution exhibits a near discon-

tinuity. For example, the simple problem of a strong source of neutrons in

a strong absorber surrounded by a vacuum will result in an angular flux

with nearly discontinuous spatial dependence at the vacuum boundaries.

This is because the analytic solution is a constant everywhere in the

interior of the slab, but near an incoming boundary the spatial dependence

of the flux must drop to zero within a few mean free paths to meet the

vacuum boundary condition. However it is difficult for the approximate

solution to follow this discontinuous behavior because it is constrained to

be continuous by the choice of the approximating subspace (Lagrange

basis functions).

In order to allow the treatment of strong spatial variations in the flux,

one can proceed as with the angular variable and simply construct discon-

tinuous basis functions at the desired spatial positions, thus allowing the
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THE FINITE ELEMENT METHOD [1 501

approximate solution to be discontinuous. However the presence of the

spatial derivative in the streaming term udrp/Bx necessitates care when

the transport equation is integrated over the spatial domain. That is, the

integration across the discontinuity will yield surface terms which must be

carefully incorporated into the integral law.

These interface terms can be properly accounted for in the following

manner that allows the use of discontinuous basis functions in such a way

that the regions are coupled by transport. We illustrate the procedure with

the one-dimensional transport equation

a +1 I ,

#513 +Er(x)q>(x,n)= %2.(X)f_l d11 <P(X,1L)+S(X,11)

with arbitrary boundary conditions. We consider in detail only the trans-

port term pap/Bx, since the other terms are treated in an identical manner

to our earlier analysis. If we multiply this term by an arbitrary 11/" E S h and

integrate over phase space, taking care to split up the integral to avoid the

discontinuity in il/'(x,u), we find

_ x5 +1 it h 1 +1 22 h

T—fo dxf_l dun 8x11) (mLHLEdxjll ‘11111 3x111 (>811)

We then integrate each term by parts to obtain

__ 1 +1 Bl” +1 h _ h

— IOdXLI dll-PIP ax +f_l ‘1111484140111 (1.11) <P(0.11)\l/ (0.11)]

_ ‘ll: 141111[<P(X5,11)¢"(x3.11)—

Here we note that Eq. 8.75 is identical to the transport term plus boundary

terms derived earlier in Eq. 8.58, except for the last term, which we denote

by I . It is this interface term that must be carefully treated to allow use of

discontinuous spatial elements.

The objective now is to use known information to reduce the interface

term in a manner similar to the reduction of the boundary terms by

explicitly substituting in the known boundary conditions. Since the only

known condition at an interface is that the solution (P(X,p.) is continuous,

albeit strongly varying, let us use this condition in the direction of particle

motion (similar to the reflecting boundary case)

(1005,11) = <P(X5,ll), 11 > 0

<P(X5,1i)= w(xrint), 11 < 0
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502 [:l NUMERICAL METHODS IN TRANSPORT THEORY

(Note the similarity to the definition of the cell edge flux in the finite

element-discrete ordinate method of Section 8.1.4.) These substitutions are

made in Eq. 8.75 for I and <p(x,u) is expanded in terms of the basis

functions

N

q>"(x,#)= El <P,~%''(X,11)

,:

If we now require the new integral law (with the extra term I) to hold for

all \l/j"(x,u),j= 1,2,...,N, we obtain the matrix element

1,: _ ff‘dwutxatuwltxw)—=i.”(x5,tt)]

_ L'd,t,t¢f(x5.p)[¢/'(x$,ti)—ill/‘(maul

which is additive to the earlier matrix element A,j defined in Eq. 8.61.

Since the space of trial functions S" is no longer continuous at the

specified spatial discontinuity, but continuity in the direction of particle

travel is imposed within the integral law, the net result is that continuity of

the angular flux in the direction of particle motion is a natural interface

condition. Although there was no need to mention it earlier, the previous

formulation treats continuity of the angular flux as an essential condition

because continuity was imposed on the space S h. Therefore the discontinu-

ous element scheme allows more flexibility for the approximate solution to

match the actual solution. This has been verified in a number of numerical

studies.48

There is a close relationship between the method discussed in this

section and the methods used to incorporate spatial discontinuities in the

discrete ordinates—finite element schemes treated in Section 8.1.3. Both

the ONETRAN/TRIDENT approach and the approach above allow the

incoming flux on a boundary of an element to be different from the

corresponding outgoing flux of the adjacent element. Conservation of

particles is then ensured by use of surface terms. In TRIDENT this is

accomplished by explicitly expressing the jump in the angular flux at the

incoming boundaries, and when this term is differentiated (because of the

transport term), Dirac (‘i-functions result. Then when this resulting equa-

tion is integrated with some weighting function, the Dirac 8-functions kick

out the appropriate surface terms, and these terms are similar to the terms

obtained in the foregoing analysis.

The slightly different formulation in ONETRAN yields the same results

in that the angular flux on the incoming boundary is allowed to contribute

to the effective source of particles within the element as a surface term

when discontinuities are allowed.
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To implement the discontinuous finite element method one can utilize

one-dimensional spatial basis functions similar to the discontinuous angu-

lar basis functions. However in this case discontinuities would be allowed

at arbitrary locations rather than at a specific location such as )1 =0 for the

angular elements. One could also use the discontinuous triangular elements

implemented in the TRIDENT scheme (see Section 8.1.3).

8.3.5 [1 Eigenvalue Problems E1 The finite element method is readily

adapted to solve eigenvalue problems. For example, if we wish to de-

termine the number of secondary particles per collision c for criticality in a

given configuration,‘ the integral law corresponding to Eq. 8.50 would

become: find 1p"(r,SZ)ES" and the lowest value of c such that for all

11"(r, mes"

—(¢*.@-v¢h)+<¢".¢">. +(E.¢".¢")=c( f dQ'E.(Q’—>fl)11>"(§l’).¢")

8.76)

After expanding the solution in terms of the basis functions and requiring

Eq. 8.76 to hold for {11$}, the generalized matrix eigenvalue problem is

obtained

A<p=cM<p

where M is the scattering matrix and A is the same as the matrix of

coefficients given previously except that M has been subtracted. This

matrix equation is readily solved by standard eigenvalue iteration methods

such as the inverse power method.48

8.3.6 El Comments on the Finite Element Method II] We have consid-

ered the application of the finite element method to both the first and

second order transport equations. We also examined hybrid schemes such

as the finite element—discrete ordinates method. The discrete ordinates

method has also been combined with a triangular finite element solution of

the second order transport equation.55

At this point there is no question that the highly developed finite

element—discrete ordinates method'”' (for the first order transport equa-

tion) is the most attractive from the standpoint of computing economy.

However it is susceptible to the ray effect; and although measures can be

taken to mitigate this phenomenon by converting the discrete ordinates

form 02f7 the equations to spherical harmonics form, this procedure is quite

costly.
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The successful application of the finite element method to the first order

transport equation in space and angle has been demonstrated.48 However

the need to solve the resulting asymmetric system of equations using direct

matrix inversion methods has a severe impact on computer time and

memory requirements. At present these penalties outweigh such advan-

tages of the first order approach as case of incorporating anisotropic

scattering, mitigation of the ray effect, and convenient treatment of all

boundary conditions as natural boundary conditions.

0n the other hand, the second order finite element scheme does result in

symmetric, banded matrices that are positive definite, hence amenable to

iterative solution techniques such as the block successive overrelaxation

method combined with a coarse mesh rebalance.60 This feature, when

viewed in conjunction with the demonstrated success of the second order

method for alleviating the ray effect“ and the reduction of the angular

domain due to symmetry of the even-parity angular flux, seems to indicate

the potential success of this approach. However computing times still do

not compare well with the production level discrete ordinates codes, and it

appears that anisotropic scattering is extremely difficult to implement in

multidimensional geometry. In addition, voids may present a problem

because of the (2,)-I term in the second order equation (although thus far

this problem has been avoided)“ Finally, if the angular flux is desired,

apparently it will be necessary in general to solve both the even- and odd-

parity equations simultaneously.62 (The scalar flux is known once the

even-parity angular flux has been calculated.)

8.4 E] INTEGRAL TRANSPORT METHODS CI The preceding sec-

tions of this chapter have all been concerned with the solution of the

integrodifferential form of the transport equation, although in the case of

the finite element method this was masked in the guise of an equivalent

integral formulation (i.e., variational or Galerkin forms). However, as

noted in Section 2.1.5, the transport equation can be integrated along its

characteristics to yield an integral equation form.

A variety of specific numerical methods have been developed for solving

the integral transport equation. We consider the traditional “collision

probability” method, then develop an alternative approach based on a

discretized formulation of the integral transport equation. Both these

methods can lead to exorbitant computing effort for even moderate sized

problems because the various mesh regions are strongly coupled. Therefore

we develop interface current and response matrix methods that avoid this

full coupling by coupling larger regions to one another by way of their

respective partial currents.
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8.4.] D Collision Probability Method III The collision probability

method63456 is commonly regarded as an approach that discretizes the

integral transport equation directly to yield matrix elements (the “collision

probabilities”), which then must be calculated. To illustrate this method,

we begin with the one-speed form of the integral transport equation

assuming isotropic sources and scattering for convenience:

—a(r,r’)

Mfl=fd/i$:7FMH) (8W)

where ¢(r)52s(r)¢(r)+ S(r) is the emission density (see Section 2.1.5) and

a(r,r') is the optical thickness between r and r’

Ir—r'I r—r'

a(r,r’)Ej(; dsE,(r—s—|-:r,—l)

For a homogeneous medium, a(r,r')=Z,|r—r’| is simply the number of

mean free paths between r and r’. The integral in Eq. 8.77 is taken over all

space. Our goal is to solve this equation numerically.

In principle at least, this task is quite straightforward. Let us assume that

we have a finite volume V of interest with vacuum boundary conditions on

all sides. In this case the integration in Eq. 8.77 can be taken over the

volume V only. Then we split V into N regions, V1, V2, . . ., VN, where the V,-

are distinct and V=EfV_lV,-. After multiplication by 2,(r) and integration

over an arbitrary region Vi, Eq. 8.77 becomes

N —a(r,r')

3 = 3 3/ e

fV‘d r2.(r)¢(r) fwd ram]; fyjd r 47''”? W) (818)

Next we introduce the definitions

= l 3 - 1 3

4»- Vi [K4 88'). ¢.-= 7i fyld we)

I L/ogowo)

2_—_.__

fVd’rar)

d3 E d3 '———e—a(m’) \l’( ’)

r

£4 r ‘(oft/1 r4'n'|r—r’|2

Pu..—

~[yd’r’ il/(r’)
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506 El NUMERICAL METHODS IN TRANSPORT THEORY

and substitute these into Eq. 8.78 to obtain

1v

21¢,V,= 2 PUipjVj, i=l,2,...,N (8.79)

j=l

If we note that \pj=2{;¢j+ Sj, Eq. 8.79 becomes

. N .

21¢.V.= 2 Pin-[21.8%] (880)

j=l

which is a system of algebraic equations for the average scalar fluxes

4>,,i = l,2,...,N. Since the left-hand side of Eq. 8.80 corresponds to 21¢,V,

= number of collisions per second in V,, and the right-hand side contains a

term VJ-ipj=number of particles produced per second in V}, evidently we

can associate PU with the average probability that a particle appearing

isotropically in region j will make its first collision in region i. If we assume

uniform material properties and emission densities #1,- in all regions V,, the

PU simplifies to

If we now interchange i and j in the definition for PU, we obtain

2i =2lVjP|j

which is the discretized form of the reciprocity principle (see Section 2.1.4).

Thus it would appear that we are finished. We need only solve the

system of equations (8.80), and this does not appear to be a formidable

task. However we still must evaluate the collision probabilities P”, and this

presents the major difficulty in the collision probabilities method. First we

note that the matrix P=[P,~] will be full in general because there is a finite

(although perhaps small) probability of transport from any volume to

any other volume V,. Thus there will be N 2 / 2 collision probabilities (due

to reciprocity) to compute and store for the resulting matrix inversion.

Second, the collision probabilities are difficult to compute, as we now

demonstrate for a general two-dimensional geometry.

We consider the calculation of collision probabilities for geometries that

are uniform in one direction. In this instance we can reduce the problem to

the computation of planar collision probabilities by integrating over the

direction of symmetry. We assume that particles are emitted isotropically

and uniformly within each discrete volume. This is known as the flat flux
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approximation.64 (The next section considers a method of relaxing this

approximation by using Gaussian quadrature to evaluate the Po- integrals.)

The flat flux approximation places a restriction on the mesh: if the flux

varies rapidly within a region, the mesh should be refined sufficiently to

ensure that the flux is well approximated by a piecewise-constant function.

Before we consider the actual computation of the Po- terms, let us

consider some basic concepts for the attenuation of particles in a geometry

with plane symmetry. First we note that if two points i and j are separated

by a distance 1- measured in mean free paths (i.e., 'r =optical thickness), the

probability that a particle leaving point i in the direction of point j will not

suffer a collision before point j is e". Now consider the case of two

parallel lines I, and of infinite extent in the z direction separated by a

distance r (in mfp). We wish to compute the average probability P(lj—>l,-)

that a particle emitted uniformly and isotropically from in the direction

of I,- will not suffer a collision before it reaches 1,. That is, we average the

probability over all possible paths between I,- and We describe a

particular path by the angle 0 which it subtends with the z-axis and define

P(lj—>l,-,0) as the probability that a particle will travel from to I,- along the

path at an angle 0 to the z-axis without making a collision. Clearly

P(lj—>l,-,0)=exp(— r/sin0). But since we have assumed an isotropic emis-

sion of particles from I], the probability of the particle being in the angle

element d0 is proportional to sin0d0. Therefore the average probability is

(see Fig. 8.29)

11 1r —1 '11 .

P(1,->1,.)=f0 d051n01>(1j_>1,,0)[f0 dOsinO] =%f0 d0sinl9e"/““"

(8.81)

Equation 8.81 can be put in a more standard form with the substitution

cosh u =(sin0)":

P(lj—>l,-)= Lwdu[(coshu)'2exp(—4rcoshu) =Kiz("')

where Ki2(r) is the Bickley-Naylor function“7 of order 2. In general the nth

Bickley-Naylor function is defined by

Ki,,(x) = [0 wdu [(cosh u )_ ” exp( — x cosh u)

Note that P(lj->l,-) is simply Po to two points i and j in a planar

geometry (i.e., a geometry with axial symmetry) if we assume isotropic

emission of particles. Therefore for geometries with planar symmetry we
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11 \

x I

1

Fig. 8.29 [:1 Line source geometry for two-dimensional collision probability

calculation.

can replace the usual e—T linear attenuation factor with the planar attenua-

tion factor Ki2(r), where 'r is the distance (in mfp) separating i and j in the

plane. This correspondence serves to simplify the calculation of collision

probabilities in quite general two-dimensional geometries, as we now

demonstrate.“

Consider the general two-dimensional geometry illustrated in Figure

8.30. We wish to compute the average probability P,j that a particle

emitted uniformly and isotropically in will suffer its first collision in V,.

Note that we can split up the probability P,j as

Pij= (probability particle will not suffer a

collision before it reaches Vi)><

(probability that particle will suffer a

collision in V,-)

To compute this average, we lay down a grid of paths between and V,-

and simply average Pi]- over all possible paths. This is conveniently done by
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_V

Fig. 8.30 [3 Cell geometry for discrete integral transport method (after Carl-

vik“).

placing several parallel lines at some reference angle <p, as illustrated in

Figure 8.30. The number of these lines is determined by their separation

distance and the number of discrete directions ¢ considered. Let us define

the probability

plj(x,y,¢)= probability that a particle emitted at x in

a direction along the line (y,¢) in volume

Vj will have its first collision somewhere

in the volume V,

[Note that by definition this first collision occurs along the line (y,¢).]

But from our discussion of the attenuation in plane geometries, we

immediately note with the aid of Figure 8.30 that

K12[2j(a- x)+ TU]: probability of traveling from x to

boundary of V,- without a collision

l—Ki2(1-i)= probability of a particle having a colli-

sion somewhere in V,- if it starts at the

boundaries
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Therefore by multiplying these terms and then expanding, we have

Pij-(x,y,¢) = Ki2[Ej-(a — x) + TU] — Ki2[2j(a — x) + ril- + '1',-]

Then if we average over all x, we find

foadxP(x,y,¢)

fly-(ya?) = —a—

d

ID x

=(a2,)-'[x1,(+,,)-K1,(TU+U)—K1,(TU+T,)+K1,(TU+E+T,)]

Finally we average over all y and 11>, noting that since we have assumed

uniform and isotropic emission of particles in V], the number of particles

in a volume element aay is proportional to do

P _ [0 “11¢ f0 bdyaejtm)

" _’_”—_l "117. M

But = goody a( y). Therefore our final result is

11>,j=(2wt/,>:j)‘l f 11¢ f @[Ki,(¢,j)-Ki,(1j+¢y.)

— Ki3('r,j + 'r,) + Ki3('r,j + T, + (8.82)

where we should keep in mind that all the path lengths r,-, 1'], and 'rlj are

functions of y and 11>.

Since the volumes V, are of finite extent, it is possible for some of the

particles emitted in V, to suffer their first collision in V,-. In other words, we

need to compute the self-collision probability P“. This can be written as

a

P--= 2 V- _' d a dxP-- x, ,

.. <11.) f¢fdyfo .( M)

where P,~,~(x,y,4>)= l — Ki2[E,-(a—x)]. Integrating, we obtain

P11: 1 _(2'”V121)—1fdyfd¢[K1-3(0)_163(0)]

We have now computed, in principle at least, all the collision probabili-

ties PU needed to solve Eq. 8.80. As noted earlier with the general
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INTEGRAL TRANSPORT METHODS El 511

expression for PI]- in Eq. 8.79, Eq. 8.82 results in the reciprocity condition

V,2/,'P,j= V,E'}P,,.

Equation 8.82 is a general formula for PI]- in any two-dimensional

geometry. However it still represents a significant amount of computing

effort because of the need to evaluate the Bickley functions as well as the

large number of collision probabilities that must be computed for realistic

configurations. Also, the form of Eq. 8.82 may be somewhat misleading in

that a significant amount of effort must be expended just to identify the

various regions that the chosen paths will intersect. Even with the use of

fast, rational approximations to the Bickley functions, the computation of

the PI-j’s may still be prohibitive for many typical configurations.65

1f the geometry being analyzed is annular, such as a pin cell calculation

for a reactor lattice analysis, the PI]- calculation can be simplified consider-

ably. For example, the THERMOS code,“ which was the forerunner of

collision probability codes for reactor analysis, uses annular symmetry to

simplify the integrations considerably. Another successful approach is the

FLURIG scheme,“4 wherein a specially chosen Gaussian quadrature set is

used to compute approximate collision probabilities. This scheme avoids

the restrictive flat flux approximation and is generally more accurate for a

given number of mesh points. Instead of considering these specific applica-

tions, however, we proceed to an alternative method for solving the

integral transport equation.

8.4.2 [1 Discrete Integral Transport E! An alternative method for solv-

ing the integral transport equation is the discrete integral transport method

of Carlvik.68 This method offers significant advantages over the traditional

collision probabilities method with respect to computing efficiency and

accuracy for a given mesh. It is particularly useful for configurations in

which strongly varying fluxes are expected, although in the limit of a black

absorber the flat flux approximation may be more efficient due to the

decoupling of the Gauss points. (For a black absorber there will always be

a finite probability of travelling from one region to another, but not

necessarily from one point to another point.) In addition this method is

readily generalized to include surface sources and can be cast into an

interface current technique that is capable of treating relatively large

configurations with a considerable savings in computing effort.

The discrete integral transport method differs from the conventional

collision probabilities method in the following ways. (i) It is applied to the

general angle-dependent integral transport equation. (ii) The angular flux

and emission density are first expanded in spherical harmonics in angle

and Fourier series in space (azimuth), and the expansion coefficients are
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512 El NUMERICAL METHODS IN TRANSPORT THEORY

treated as unknowns in the calculation. (iii) Transport coefficients (similar

to collision probabilities) are computed by way of Gaussian quadrature

because they are formulated in terms of a discrete pointwise representation

in space rather than a regionwise representation.

We consider only a few of the more interesting features of the discrete

integral transport method, following closely the development of Carlvik.68

(Consult the original work for more details.)

We begin with the angle-dependent integral transport equation, which

we write as follows:

q>(r,f1)= [Oman—880,6) (8.83)

where tl/(LSAZ) is the emission density, and a is the optical thickness (see

Section 2.1.5). We consider the case of an annular geometry depicted in

Figure 8.31. We first expand the angular flux in terms of spherical

harmonics in angle (see Section 4.2.2) and Fourier series in the spatial

azimuthal angle (p (not to be confused with the azimuthal angle 4: in the

K

Fig. 8.31 1] Coordinate system for annular geometry (after Carlvikm).
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direction space):

¢<r.a>=<27r>-' i i i madame»)

k=—oo v=011=—"

where by orthogonality

27! A . A

<m';(r)= f0 d¢'fdne—'"¢Yi.(8¢>¢<r.m

Here we have implicitly assumed that there is no‘z-dependence. Using a

similar expansion for the emission density ¢(r,fl), we substitute these

expansions into Eq. 8.83, multiply by Y,‘,"m(0,¢)e_"'“", and integrate over all

S2 and (p:

q>,';(r)= I0 2318 I do [0 °°dRe-“e'*8Y;m(0,¢)

M8

X

2 2 JZU'XZWYleiw'Yviw'fi') (3-84)

°°v=0ll 1’

Our goal is to transform Eq. 8.84 into the following system of equations:

J N :1

<p:1(r.-)= 2| 20 2 Tn'Jl“(r.-,r)) 1882(8)

j= v= I‘: I’

This system is quite similar to the set (8.80) obtained earlier for the more

conventional collision probabilities method. In this case the transport

coefficients T,,’f,';(‘(r,.,r;) give the angular flux moments (pi: at r,v due to a unit

source at r!- emitting particles with an angular distribution Y,,P(0,¢).

To simplify Eq. 8.84, we note that the integrals f d S2 f dR are taken over

all space. Therefore we can change the variable of integration to the more

convenient volume element:

2 __ ,

dfldR—>R;dRdfl-> i dV—>r"dr’d<p’d-(z—z)

R2 R2 R2

If we define t as the distance between r and r’ measured in the xy plane

(see Figure 8.31), then R=[(z —z’)2+ t2]'/2 and sin0= t/R. Now we make

the same change in variable, coshu=(sin0)_l, as we did when we in-

tegrated Eq. 8.81, causing the integrals to become

fdQfdR[ ] =fooodr’r’Lzwdqa’jlno d(z—z')t'zcosh_2u
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514 El NUMERICAL NIETI-IODS IN TRANSPORT THEORY

But now we define r as the distance (in mfp) corresponding to t and note

that d(z—z')=tcoshudu. With these changes, Eq. 8.84 becomes (noting

cos0=tanh u)

oo 00 I’

mm=f°°rdr 2 2 2 n(r'XzwWfz d<1>f2d<1>’e"“"""”

O k=—co,,=0p.=—u 0 0

e—rcoshu

X ,- Ifoo du Ynm(tanh u.¢) Yviiaanh “40W

Using the explicit form of the Y,,m(f32) functions, we can reduce this to

intv= [0311/44 i i i norm-‘Ar

K=-<><> i=0 11=—"

2 Zn . , .

xf "def drp’e'm’_"°’+“‘l’_'"¢)t_'G,Z,'f‘l(r) (8.85)

0 0

where G,,'f,'f‘,(-r) is related to the Bickley-Naylor functions [G8:g,1('r)= Ki (1')]

and defined by

e—rcoshu

l 00

mp. _ m it

G”,,,(r) _— —2 L Oodu P” (tanhu)P, (tanh u) cosh/u

Furthermore

4421;111:1111

Equation 8.85 can be simplified even further if the material properties

do not depend on the azimuthal angle (p. In this case r is a function only of

1‘l= rp— Q)’ and it is easy to show that

2w 21! .

d d 'eI(Ks>'—kr1>)t—lei(n¢’—m¢)Gmu

f0 wfo 4 We)

2'rr . . ,

=2wskkfo doe'k"1- 'e'("‘l’ -'"¢>G,;:;‘,(¢)

With this simplification, Eq. 8.85 becomes

m 00 / I w p I 2" ‘1 [(kIT— ’+m) m

rp..<r)=f0 2wrdr 2 2 1.1.0141." I dun) e “8 “’G..,"1(r)

V=OF=_I' 0
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Finally, we choose a discrete radial mesh at the points r,-, i=1,2,...,I and

evaluate the integral with Gaussian quadrature. For example, an arbitrary

integral over r becomes

a N

f0 dr’2rr'f(r’)= 2 v.-f(r.)

i=|

where 0,- contains the appropriate weight (X277). We now have the final

expression for <pn'2(r)

I N V

<P,fZ(r.-)= 2 2 2 Tfi‘d’tGlVjtl/M’j)

j=l V=0 11=—r

where

my“) = A," [0 “11.3010 - ' ei<'<*+1~¢'—m¢> 0,750) (8.86)

Concerning this result, note that the azimuthal (“pole” mode) terms do

not interact. This is a consequence of our assumption that the material

properties were azimuthally symmetric. The diagonal terms (r,- = r) present

a problem because they diverge in general. However they can be calculated

on the basis of particle conservation over the entire cell.“7

The analysis has assumed that the spatial integration was extended over

all space, or if there were boundaries, they were of a vacuum nature. For

other boundary conditions, such as the usual “white” boundary condition

for a pin cell calculation, one can modify the matrix elements T(r,-,rj) on

the basis of conservation and reciprocity arguments.

In practice, the calculation of the matrix elements T(r,-,rj) can be made

simpler by transforming the 1? integration to a more convenient variable,

then using a specially tailored Gaussian set that takes into account the

properties of the integrand. 68:69

We complete our coverage of discrete integral transport calculations

with a brief discussion of its generalization to include surface sources in

the next section.

8.4.3 [1 Interface Coupling Methods E1 The traditional approach to

solving the integral transport equation proceeds by calculating the collision

probabilities (or transport coefficients) that relate a given spatial region to

all other spatial regions in the domain of interest. This approach, which we

refer to simply as the “Pi!- method,” was seen to be somewhat time-

consuming because of the full coupling of the collision probability terms.
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516 El NUMERICAL METHODS IN TRANSPORT THEORY

We now turn to an alternative method based on coupling spatial regions

with incoming and outgoing partial currents between the regions. By

definition, this implies that a region will be coupled only to its adjacent

neighbors. This feature has obvious implications for drastically reducing

the computational effort associated with the standard Pij techniques. There

have been a variety of applications of this basic approach, and we refer

collectively to these methods as “interface coupling” methods or “J :”

methods. Such schemes include the interface current,7°'74 discrete integral

coupling,”76 and response matrix methods.”—8l

The interface current and the discrete integral coupling methods are

based on a mesh structure consisting of relatively coarse regions that are

further subdivided into finer mesh regions. Within a coarse mesh region or

node, the fine mesh regions are all coupled together by way of the

traditional collision probabilities method (or the discrete integral transport

method). These regions are also coupled to any incoming fluxes on the

boundaries of their respective coarse regions. The nodes are coupled

together by way of incoming or outgoing partial currents, which, of course,

are the same quantities for adjacent nodes. Therefore fine mesh regions

corresponding to different nodes are not related directly as they would be

with the traditional P,j methods, but rather are related indirectly through

the interface currents. Thus the interface currents and the fine mesh fluxes

are the unknowns in the corresponding system of equations.

The response matrix method is similar except that the fine mesh fluxes

are not computed as unknowns along with the incoming and outgoing

partial currents. Instead, one computes the response matrices that relate

the outgoing partial current of a node (the response) to a given incoming

partial current (the input). Thus the fine mesh calculation is used to

compute the response matrices beforehand, not during the actual solution

of the equations. Once the response matrices have been computed by way

of standard collision probabilities methods, or Monte Carlo or diffusion

theory methods, for example, one solves for the distribution of partial

currents that results in a self-consistent system (i.e., J ,i“=J f‘" for adjacent

regions I and J). Once the partial current distribution is known, the

detailed within-node flux distribution can be calculated with another

response matrix generated during the fine mesh computations.

The interface coupling methods are derived from the following generali-

zation of the integral transport equation:

<p(r,§2)= foRmxdR ¢(r’,§l)e_"("")+ <p_(rS,IAI)e_°‘("") (8.87)

where 410,82) is the usualAemission density, a(r, r’) is the optical thickness

between r and r’=r—RIZ, a(r,rs) is the optical thickness between r and
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INTEGRAL TRANSPORT METHODS 1:1 517

rs = r— |r——rs IQ, and,_ 1p_(r:,ASA2) is the incoming angular flux at rs

[i.e., (p_ (r,,Q)=<p(r:,S1) for SZ-é,<0, and zero otherwise]. Note that the

integration in Eq. 8.87 is taken over a finite region, and the contribution

from the boundary is explicitly included. If the region of interest had

vacuum boundaries, 1p_(r,,fl) would be zero and Eq. 8.87 would reduce to

an earlier version of the integral transport equation (8.83). Equation 8.87 is

the starting point for the various interface coupling methods.

Interface Current Method El Let us integrate Eq. 8.87 over all S2 and

introduce the following changes in the variables of integration”):

d3r’=dV’=|r—r“]2dRdS2

d2rs=dS = |r—rS|2dSAZ|Q'é, |—1

to obtain

—a(r,r’) A _a(r',3)

' '= d’ 'e 39 + d2 —e '- ,fz -‘ 8.88

¢( ) fy r r_r/|2 ‘p(r ) [g r8 |r__rs|2 |-’1n(rs )es ( )

Here we have identified the inward partial angular current jin=f2tp_(rs,§l).

Next we partition the volume V and surface S into regions Vi,i= 1,...,N

and Sa,a= 1,...,M. If we now multiply Eq. ‘8.88 by Z,(r) and integrate

over V,-, we find

N M

V121¢1= 2 Vj\l/,-P1,-+ 2 15.11.. (8-89)

j=l a=l

where

l l A A

qbizvifdarflr), (pl-E ifdflfdsrtl/(nfl)

1;;5 _ do] d2r,l,',,,(r,,t2)-é,|, 25%] d3r2,(r)¢(r)

5. i V,

n-é,<0

—a(r,r’) A

,2 MOM/,9)

e

Ir-rl

Pij fV‘d3rfl/Jd3r'

PM; Islldzrxfl/ldhzlr)

e—u(r,r,) ' A ‘

mljin(rs’n).esl

s

Note that PM is just the first-flight collision probability characterizing
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518 I] NUMERICAL METHODS IN TRANSPORT THEORY

particles entering the system at S,I that make their first collision in VI.

Equation 8.89 is the generalization of Eq. 8.80 to include surface

sources. At this point, if we knew the incoming current distributions

jIn(r,,fl), we could treat the terms ZQLIJI‘; P,” as an effective source and

directly solve Eq. 8.89. Suppose we treat the volume V as one node, call it

V, , in the overall domain of interest. Then we require Eq. 8.89 to be

satisfied for each such volume:

i=l,2,...,N,

, ’.--,

n2,.-¢.= 2 nit-8+ 2 1:11’... (8-90)

jEV, (1651

At this point we note that JI‘I‘l for a volume V, will be the same as JI'juI for

an adjacent volume VJ. However we still need additional equations to

solve for the o’s and J ’s, since Eq. 8.90 is not sufficientAby itself. We obtain

these additional equations by multiplying Eq.A8.87 by Q-e'x and integrating

over the surface S, and the angular domain IZ-e‘, >0:

fsudlr,_EI>Od§ZQ-3<P(r.,fi)= Ludzrsi>0d§l§2-éS[dR¢(,',Q)e—u(r,,/)

(8.91)

Now we note that the integrations over $2 on the right-hand side can be

transformed into volume and surface integrals as before to yield

Jg,,,= 2 VIIpIPGI+ 2 1313,, for aES,, 1=1,2,...,1v

rev, bGS,

(8.92)

Here Pa,- is the first-flight escape probability for a particle to escape

through surface S, if it is emitted in region VI,

|Q'é.|¢(",Q)

I e—u(r.,l’)

Pa,- 5 —— d Zrs d 3r’

\P- s [VI |rs — r’ |2

and PHI, is the first-flight escape probability for a particle that enters SI, to

escape through Sn

1 2 2'e—a(r...r;) A A ‘I A ‘I

PabEJ—bf d r, d rsm'ln.eslllin(rsrn)'esl

in I, Sh
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Equations 8.91 and 8.92 are the interface current equations to be solved

for the fluxes and currents. Of course we thus far have only formal

definitions of the various collision and escape probabilities, and these

remain to be calculated. This task requires a significant effort, but it is

nevertheless considerably less time-consuming than the work of calculating

the standard collision probabilities. In practice, one generally assumes the

flat flux approximation to simplify the P,j and Pa,- computations and a

cosine current (corresponding to an isotropic incoming flux) distribution at

the boundaries. The cosine current approximation yields poor results for

small mesh spacings since anisotropic angular distributions can be signifi-

cant on the scale of a lattice calculation, and this results in poor predic-

tions if a cosine distribution is assumed.“70

One can also express the interface flux in a PI expansion instead of the

cosine current (PO expansion). However it has been noted that this assump-

tion still results in significant errors for some applications. An interesting

remedy to this problem involves expressing the angular flux at a boundary

in terms of a PI expansion relative to an arbitrary direction rather than the

normal to the surface.73 In essence this method determines iteratively the

predominant direction of particle flow and then expands the flux in a PI

expansion about this direction.

Discrete Integral Coupling E1 The discrete integral transport method dis-

cussed in Section 8.4.2 is readily generalized to include surface sources. It

can therefore be cast into an interface coupling method quite similar to the

interface current method discussed in the preceding section. Since many of

the steps are similar to either the earlier development of the method (cf.

Section 8.4.2) or the interface current method, we present only the prin-

cipal results.75'76

The generalization consists of replacing Eq. 8.83 with the following

integral equations:

q>(r,§2)=j-RmaXdR\l/(r’,@)e'“("")+<p_(r:’,§2)e_“(""') (8.93)

0

'‘ Rmax A ’ A __ '

qp+(r,,n)= [ dR¢(r',n)e-"<w>+<p_(r;,n)e “('16) (8.94)

0

where Eq. 8.94 is simply the outgoing angular flux at rs due to uncollided

particles from within the volume as well as uncollided particles entering

the surface elsewhere. (We could have used Eq. 8.94 to derive Eq. 8.91 in

the preceding section.)
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520 l] NUMERICAL METHODS IN TRANSPORT THEORY

Equations 8.93 and 8.94 are then manipulated in theAsame manner as

Eq. 8.83. That is, we expand tp(r,fl),<p+(r,fl), and <p_(r,SZ) as follows:

<P(r,§1)= i i i :;<r)(28>"e"~8Y.,.w.¢)

K= -@ v=0 #= —v

V ¢:k_+.(271)— leimpYup(09¢)

and integrate Eqs. 8.93 and 8.94 over all space and angle. If we follow the

same steps as in Section 8.4.2, we arrive at a set of coupled matrix

equations similar to Eq. 8.86 for the angular flux moments <p,fZ(r,-) and

(p,§Z+(r,,), where r, is an interior point and rb is a boundary point. (The

detailed equations and matrix elements may be found in Reference 75.)

Finally, we observe again that an outgoing flux for one cell is an

incoming flux for the adjacent cell to derive supplemental equations

relating the incoming and outgoing angular nodes <p,$_ and (1);: +, respec-

tively. These equations result in a coupling of the pole order modes

(different k), but not the angular moments.

The result, as in the interface current method, is a system of algebraic

equations that are solved for the flux moments on’: and (12,121.

Response Matrix Methods El Consider again Eq. 8.89, which relates the

outgoing partial current of a particular node V, with its internal emission

density and its incoming partial currents:

JZm= 2 Val/iPw-i' 2 15.121, (8-89)

ie V, b e s,

where Pa,- and Pa), are the first-flight escape probabilities described earlier.

Note that for a given configuration, the outgoing current is a linear

function (response) of the incoming current. If we define a vector of

outgoing currents J =col(Jl,Jz,...,JN), where N is the number of surfaces

S,z being considered, we can represent this linear relationship as follows:

Jout = RJin

where R is the response matrix. For example, if J °“‘(i, n) is the outward

partial current in node 1' (corresponding to a given angular, energy, and

spatial indexing scheme) on face n due to an incoming current J in( j, m),

the response coefficient is computed as follows:

Jout(i,n)

R(i,n;j,m)= . '

J"‘(1,m)
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INTEGRAL TRANSPORT METHODS El 521

Thus the entries of R are determined by setting all incoming currents to

zero on all faces, except node j and face m, then computing the ratio above

given the partial response J ‘“"(i, n). For a given distribution of incoming

current Ji", we then sum up over all the partial responses to find the total

response J°‘“.

The response matrix R may be viewed as the discretization of the

surface-to-surface Green’s function defined by

j.<r.,fi>=f,dzr;f ‘1960.,(hefty-(4.9’)

The response matrix R may be a function of the system multiplication

k=keff [i.e., R=R(k)], and it is necessary to account for this in practice.

Thus the response coefficients must be determined with k as a parame-

ter'78.79

We can express mathematically the fact that the incoming current vector

is merely a rearrangement of the outgoing current vector, or

Jin = PJout

where P is a permutation matrix that reorders J°“‘. But we know that

J°‘“ = R(k)Jin

Therefore

.1“ = P(R(k)J‘“)

and now we can solve for J“ and k such that this equation is satisfied. This

can be accomplished iteratively by estimating k and J1“, then computing

R(k)Ji". But since we have already computed R(k), the amount of com-

putational effort is substantially reduced.

Once J“ has been determined, the local flux distributions within each

cell may be determined by way of Eq. 8.89. Again this equation may be

expressed in terms of a response equation

4, = RcellJin

where the entries of R°°" are computed in a manner similar to that

employed for the current response matrix.

Clearly the response matrix method should result in substantial improve-

ments in computational efficiency once the response matrices have been

calculated. However, this task may be formidable, and it is difficult to

judge the relative efficiencies of the response matrix method, the interface

current method, and the discrete integral coupling method.
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522 El NUMERICAL METHODS IN TRANSPORT THEORY

8.5 [I TIME-DEPENDENT TRANSPORT E1 The relative simplicity

of the time derivative term, 0' 'Btp/dt, that appears in the transport

equation allows the application of numerical schemes that are essentially

straightforward extensions of the methods used to solve the time-indepen-

dent transport equation. In this section we will describe a general method

for treating time-dependent transport processes that is independent of the

method used to treat the remaining spatial and angular variables. Then we

develop particular examples of time-differencing schemes that are compati-

ble with either discrete ordinate or finite element transport methods.

8.5.] 1] Direct Time-Differencing Methods E1 Consider the time-depen-

dent transport equation written in abstract notation as follows:

1 as) _.

E 73'; +L(p—S

Here, we take L to be the one-speed transport operator

Lo Et‘z-vo +Z,(r)° - fdi‘i'z,(o'_>n)o

and assume that the appropriate initial coriditions and boundary condi-

tions are specified on the angular flux (p(r, S], t). The most direct approach

to solving Eq. 8.95 consists of discretizing the time variable into time steps

10,t,, . ..,t,,, then approximating the time derivative in Eq. 8.95 with a

simple forward difference formula

90.9.1...) —<1>(r,§l,t.)

[n+1 _tn

8

‘8

_~

l

t,, 0

cl—

@l

'~\

We could then evaluate the remaining terms in the transport equation at

the advanced time step tn +1

I n

<1>"+—q> ..+1 "+1

————+l.rp =s

vAt

where At" at” + , - t,, and <p"(r,§l) Eq>(r,§2,t,,). This can be rearranged as

[rpm =5 (8.96)

where we define E E L + (vAt,,)‘l and 5(r, (A!) Es"+'(r, Q) +
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TIME-DEPENDENT TRANSPORT I l] 523

(vAt,,)' 'tp"(r,§2). Since the right-hand side of Eq. 8.96 will be known from

the nth time or the initial condition, we can identify Eq. 8.96 as just the

steady-state transport equation with a modified total cross section

251mm,)“

Therefore this fully implicit scheme allows us to solve the time-dependent

transport equation by simply redefining the total cross section and source

at each time step ~and applying a standard time-independent transport

method to invert L. For example, the TIMEX82 computer code employs

the ONETRANZ' finite element—discrete ordinates method to solve the

time-dependent transport equation in this fashion.

8.5.2 El Weighted Difference Schemes [1 One can treat the time vari-

able in a manner more analogous to conventional discrete ordinates

methods by discretizing the time derivative using cell-centered difference

formulas, then relating the cell-cornered fluxes to the cell-centered fluxes

by weighted arithmetic relations. For example, with a one-dimensional

spherical discrete ordinates method, the time derivative at time t" would be

expressed as

8?’ ¢i'r'n+l/2_ 52"”

E r,,= A!

and the “cell-comered” (in time) terms <p,-’,',,+('/2) and <p,~',',,_('/2) would be

related to the cell-centered flux with a weighted diamond difference

expression

(Pi; = (l — (1)9)‘;— 1” + “Pt: I”

For a =% we arrive at the usual diamond difference scheme. This has been

employed for the solution of the unsteady radiative transfer equation.83

The case 0: =1 corresponds to the fully implicit scheme used in the TIMEX

code. A time-dependent version of ANISN, TDA,“ uses the weighted

difference approach, as does the two-dimensional time-dependent discrete

ordinates code TRANZIT.85 Both these codes have built-in provisions for

modifying a (and the weights for the other variables as well) to ensure a

positive solution.

8.5.3 E1 Time-Dependent Finite Element Methods [1 The general ap-

proach of solving the time-dependent transport equation by inverting the

effective steady-state transport operator L at each time step is well suited

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



524 1:1 NUMERICAL METHODS IN TRANSPORT THEORY

for discrete ordinates methods. However a somewhat different approach is

more convenient when phase space finite element methods are employed.

We can derive the integral law characterizing the time-dependent transport

equation asAfollows: A

find <p(r,SZ,t)EHE such that for all 111(r, SDEHE

%%(¢.11)-(¢.a-v¢>+<<p.1>.+(K<1>.1>=(s.¢>+<¢..1>_ (8.97)

where s=s(r, 12, t) and <pB(r, S2, t) is a time-dependent incoming flux on the

boundary.

Note here that we have kept our space HE the same as for the

time-independent problem. The variable t is simply a parameter as far as

the space H E is concerned. As we did for the steady-state case, we can seek

a solution from a finite element subspace S" CHE and expand the ap-

proximate solution in terms of the basis functions for Sh

N

<1>"(r.n.1>= 2111108189)

,-

—except that now the expansion coefficients ¢j(t) are allowed to be time

dependent. It is straightforward to demonstrate that when this expansion is

substituted into Eq. 8.97 and the weighting function 410,11) is chosen as

each of the basis functions 111/159), one arrives at a matrix equation

%M.i>+.4¢=s (8.98)

where A, ¢, and S are identical to their earlier definitions in Eq. 8.54, and

M1] = (‘P/hr ‘hih

Standard time-stepping methods can now be used to solve Eq. 8.98. For

example, if we choose the Crank-Nicholson scheme, Eq. 8.98 would be

discretized as follows:

1 ¢(n+l)_¢(") ¢<"+'>+¢‘"> _1 (1+1) (n)

E”[ A: l+Al 2 his +8]

where we have assumed that the matrix A is not a function of time. This

equation can be rearranged to yield

vAt)

(8.99)
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Since we know dam) from the initial conditions, Eq. 8.99 can be solved for

all later times t,,,n = 1,2, . If A does not depend on time, it is convenient

to use an LU decomposition scheme to invert M+(oAt/2)A

At

M+ )A = LU

since for time steps after the first step, only back substitutions are required

to solve for oi"). The matrices L and U are saved from the first time step,

and then

¢(n+l)= U—lL—lg

where

s= [M—(%)A]¢(")+(S("+”+S("))(%)

It should be apparent that the numerical solution of the time-dependent

transport equation can be achieved by a relatively straightforward exten-

sion of the finite element method developed for steady state problems.

Whether discrete ordinate or finite element methods are used to attack

time-dependent problems, it is clear that the burden of the effort involved

in developing efficient and accurate solution methods centers on the

particular scheme used to solve the steady state transport equation at each

time step.

[I PROBLEMS El

8.] Derive the form of the one-speed transport equation in plane geome-

try by expanding the scattering kernel in a Legendre polynomial expansion

of order L.

8.2 Many numerical transport codes solve the criticality eigenvalue prob-

lem for the number of secondaries per collision c which makes the given

configuration critical. Relate this parameter to the more conventional

criticality eigenvalue keff for a homogeneous slab geometry, assuming

one-speed transport and isotropic scattering.

8.3 Derive the discrete ordinates equations in one-dimensional slab ge-

ometry for the case of N=2 (e.g., the S2 equations). Assume isotropic

scattering and choose pI= —p/Z,wI=w2. Compare thestructure of these

equations with the PI equations. Assume steady state and a homogeneous

medium for convenience.
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526 El NUMERICAL METHODS IN TRANSPORT THEORY

8.4 Using the $2 equations developed in Problem 8.3, derive equations

satisfied by the sum and difference of the two angular flux components,

<p(x,;i,) and q>(x,p.2). Then show that with an appropriate choice of a], the

flux will have the exact asymptotic diffusion length 110. (See Reference 9 for

further details.)

8.5 By using forward difference approximations for the derivatives in the

plane geometry SN equations, that is,

k+l_ k

9_(P (P 80

8x 8, Ax

III

show that difference equations can be obtained from which a: will always

be positive, no matter what the mesh spacing. (Such difference equations

are. however, less accurate than the central difference equations, which can

lead to negative values of the angular flux.)

8.6 Derive the original form of the SN equations in spherical coordinates

by using linear angular interpolation to develop numerical differentiation

and quadrature formulas.

8.7 Obtain and run a discrete ordinates code such as ANISN for a

one-speed slab of thickness 2.0 mfp. In particular, compute the critical

number of secondaries per collision c, using Gaussian quadrature sets for

N=2, 4, and 8 and a mesh spacing Ax=(2N)_', E,= 1.0, v2‘.f=0.5, and

2, =0.5. Compute the eigenvalue c =%(1+ k _ l) and compare this with the

benchmark value c= 1.277101824. Plot the error 8 versus mesh spacing Ax

and determine the order of convergence p, where 8~(Ax)”.

8.8 The standard Gaussian (PN) quadrature set is defined on the interval

[— l, l] and is normalized to f ‘I :dx= Znwn =2. Therefore an arbitrary

integral can be written as follows:

+1 N

[ dxf(x)= grow.

-—1

Assume we would like to perform a PN quadrature over the intervals

[— La] and [a,l] separately. Express the two separate quadrature sets

{y,,,u,,} and {zmvn} for [—l,a] and [a,1], respectively, in terms of the

original set {xmwn}.

8.9 Consider the classical Milne problem for a semi-infinite scattering

(c= 1) medium. Choose an SN quadrature set (at least S4) and a DPN

quadrature with the same total number of points (e.g., S4 and S2 on each

half-range). Then run a standard discrete ordinates code (e.g., ANISN) to

compute the emergent angular flux q>(0,p.) and compare this with the exact

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



PROBLEMS I] 527

angular distribution as given by Case, de Hoffmann, and Placzek.86 Ex-

trapolate the asymptotic scalar flux ¢(x) to zero and determine the

extrapolation length graphically and compare this with the exact value. In

order to simulate the semi-infinite geometry, choose a slab thickness of

several mean free paths with an incoming source on one face to simulate

the infinite source at infinity. If the slab is thick enough, the scalar flux will

reach its asymptotic form within the interior and will not depend on your

choice of the incoming source.

8.10 Compare the asymptotic flux in the interior of the slab generated in

Problem 8.9 with the exact flux from Case, de Hoffman, and Placzek.86

(Hint: the choice of c= 1 yields a particularly convenient asymptotic flux.)

8.11 Demonstrate that a direct finite differencing of the conservative form

of the one-dimensional spherical geometry transport equation results in the

same difference equations that are obtained using the particle balance

approach. In particular, demonstrate that the armtl/2 terms are the same,

and that they satisfy the usual recursion relation if a certain condition on

the quadrature set { pwwm} is satisfied.

8.12 Prove that the weighting scheme used in Section 8.1.4 for the discon-

tinuous finite element—discrete ordinates scheme is equivalent to Galerkin

weighting (i.e., that one implies the other).

8.13 Show that the coupled diffusionlike equations that resulted from the

first method of solution of the P3 equations, Eq. 8.44, are formally

identical to the two-group diffusion equations by identifying each of the

coefficients as one of the two-group cross sections.

8.14 The finite element formulation of the first order transport equation

(assuming vacuum boundaries)

—(<P,§Z'V¢)+<<P,¢>+ +(K<P,\l/)=(S,\P)

can be written compactly with the introduction of the bilinear form

a(<p.¢)= —(<p.Q-v¢)+<<p,¢>. +(K<p.¢)

as follows:

a(<i>,\I/)=(S,¢)

Show that a(<p,¢) is positive definite, that is,

a(<P,<P)=0 => <P=0

if the system is characterized by c <1 and isotropic scattering.
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8.15 Show that the matrix of coefficients A resulting from the finite

element approach to the first order transport equation is nonsingular. That

is, show that if Ac=0, where c is arbitrary, then c=0. (Hint. Premultiply

by c‘ and expand in the basis functions for S")

8.16 Under what conditions will the collision operator be symmetric, that

is,

(K<P,\l/)=(K\P,‘P)

where K is defined by Eq. 8.48?

8.17 Prove the reciprocity relation

211' VIP/'1': 21] VjPij

using the notation from Eq. 8.79.

8.18 Demonstrate that

w

Ki...(x)= f dX’Ki.(X')

X

8.19 Prove the surface reciprocity theorem

SorPirx=4Vi2lPoii

under the assumptions of the flat flux and cosine current approximation.

8.20 Show that if an annular geometry with azimuthal symmetry is being

considered, Eq. 8.85 can be simplified to the form of Eq. 8.86.
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Computer Simulation

of Particle Transport

Thus far our concern has been the solution of the transport equation (using

either analytical or numerical methods) to determine the particle phase

space density n(r, v, t) or various weighted integrals of this quantity. How-

ever we can adopt a totally different approach and attempt to simulate the

particle transport process directly on a computer without even referring to

the transport equation.

Since particle collision events are usually described statistically, particle

transport takes on a highly stochastic nature, that of a random walk in

which particles stream freely between random interaction events. There-

fore it is natural to utilize statistical methods for simulating transport

processes. The most common methods, referred to aptly enough as Monte

Carlo techniques, estimate the expected characteristics of the particle

population as statistical averages over a large numberAof casemhisitories of”

_particle lives that are simulated by a computer. Such random sampling

techniques can alsobe used to generate solutions to the transport equation

directly. .

Random sampling or Monte Carlo methods are most appropriate for

test particle (linear) transport processes such as those characterizing neu-

tron diffusion or radiation transport. Collective particle (nonlinear) trans-

port is more commonly simulated using deterministic methods in which the

microscopic equations of motion (e.g., Newton’s laws) characterizing the

dynamics of the many particle system are solved directly. Such particle

dynamics simulations are commonly used today in studying dense fluids

such as liquids or plasmas.

This chapter discusses both statistical and deterministic methods for

simulating particle transport processes and introduces some of the more

popular computational tools used in transport simulations.

9.1 III STATISTICAL SIMULATION (MONTE CARLO) METHODS

El One commonly encounters transport problems in practical applications

too complex to allow direct numerical solutions of the transport equation

(e.g., three-dimensional geometries, time-dependent transport phenomena).

In these situations, one is usually forced to rely on Monte Carlo or

E1533
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534 [l CONTPUTER SIMULATION OF PARTICLE TRANSPORT

statistical sampling methods to simulate the transport process. That is, one

develops a statistical analogue description of a particle’s life history on the

computer, using randqmnsampling methods; Then by running off a large

number of such case histories, these results can be averaged to obtain

estimates of the expected behavior of the particle population. Particle

transport processes are quite amenable to such a treatment, since the

individual interaction events (collisions) are usually described in terms of

statistical characteristics (mean free paths or cross sections).

In this sense, then, the Monte Carlo method may be defined as a method

of statistical simulation of some probabilistic model or analogue of a given

problem.“7 However, as we demonstrate momentarily, Monte Carlo

methods can also be used to solve deterministic problems such as the

evaluation of definite integrals or the solution of integral or differential

equations. Indeed, both approaches have been applied with some success

to particle transport problems that can be characterized either as a random

walk process (by specifying the relevant interaction probabilities), or as a

deterministic problem (described by the particle transport equation char-

acterizing the phase space particle density).

The application of Monte Carlo methods to the direct simulation of

particle transport phenomena is conceptually rather simple (although the

programming logic of even a simple “physical analogue” Monte Carlo

computer code can become quite complex). One need merely model the

relevant physics of each particle interaction event as closely as possible,

allowing the particles to stream freely between interactions. Unfortunately,

this direct simulation approach fails in a large number of problems of

practical interest; therefore many modern Monte Carlo methods are based

instead on the transport equation for the development of random sampling

procedures.

Although a primitive form of Monte Carlo method was applied to the

Boltzmann equation as long ago as 1901, the major stimulus for the

development of Monte Carlo techniques came from the complicated neu-

tron diffusion problems that were encountered in the early work on atomic

energy. Fermi was among the first to apply random sampling methods to

study neutron moderation.7 The major development of computer-oriented

Monte Carlo methods for transport problems was provided by N. Metrop-

olis and S. Ulam8 (who also coined the name) at Los Alamos during the

1940s. The application of Monte Carlo methods to the solution of integral

equations was developed by Albert9 and Spanier,lo and the development of

variance-reduction schemes was initiated with the work of von Neumann,

Ulam, and Kahnnduring the early 1950s.

To illustrate the various ideas involved in the use of Monte Carlo

methods to simulate particle transport, consider how we might apply

random sampling techniques to describe neutron transport.5 The essential
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STATISTICAL SIMULATION (MONTE CARLO) METHODS El 535

idea is to tracekout a number of neutron histories, using a,t_a_bl_e_ of random’

numbers to determine whether and what type of interactions occur along a

neufron’s flight path. 7

For example, suppose we know that a neutron of energy E has suffered

a collision at a point r. To determine the type of collision event, we first

compute the probabilities for capture, fission, and scattering, pc, pf, and p,,

respectively, using the appropriate cross section data:

E.(r,E) E/(LE) 2,0,5)

pc=—_—’ Pf=—, P,="“—

2,0, E ) 2,0, E) 2,0, E)

Since p, +pf+p, =1, we can divide up the real interval [0,1] into segments

proportioned as these probabilities

Capture Fission Scattering

A A A

I \ / \ I \

l l | l

0 Pc aw, P,+P,+P.=l

Now we just select a “random number”, call it Q, from a sequence or table

of positive real numbers distributed uniformly (equally likely) on the

interval [0,1]. If this number 5, lies in the range 0<£,-<pc, we choose a

capture event; if p, < $,-<pc +pf, we say that a fission event has occurred;

and if p, +pf<§v < l, we identify the interaction as a scattering event. In

this way we have managed to randomly select the type of interaction event

in a manner consistent with the known pflbabilities of occurrence for each

type of event.

If we choose a capture event, we terminate the neutron history. But if

either fission or scattering occurs, we must perform an additional “sam-

pling” process to determine the number and characteristics of neutrons

resulting from these interactions. Once again we would implement a

random sampling process that is biased as the known probabilities for

fission neutron emission or neutron scattering.

Once having determined the consequences of a collision event, we then

compute the distance the neutron will travel before suffering its next

collision. Again this involves a random sampling procedure. But now we

must be a bit more sophisticated, since the probability of a neutron

interaction is not distributed uniformly along the neutron path length (i.e.,

the collision probability is larger close to the origin point).

To illustrate, recall that for a uniform medium, the probability that a

neutron will suffer an interaction in an interval dx about x is given by

p(x)dx=E,exp(—E,x)dx (9.1)
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536 El COMPUTER SIMULATION OF PARTICLE TRANSPORT

[This probability p(x) is an example of what is known as a probability

“distribution” or “density” function. As such, its integral over all x must

obviously be equal to 1.]

Let us also calculate the probability P(x) that the neutron will suffer an

interaction before traveling a distance x by integrating p(x) from 0 to x:

P(x)E](;xdx’p(x')= l —exp(—E,x) (9.2)

[P(x) is referred to as a “cumulative” distribution function] Now note that

P(x) is a monotonically increasing function of x that ranges from 0 to 1 as

x ranges from 0 to 00 (see Figure 9.1). Therefore for each neutron path

length x,-, there is a unique interaction probability P,- (and vice versa). That

is, it should be possible (in principle, at least) to invert P(x) to determine x

as a function of P.

The latter feature is quite important. Since the values of P,- are distrib-

uted over the interval [0,1], we are tempted to use a table of random

numbers distributed uniformly on the interval [0,1] to sample for values of

P,-, then calculate the corresponding point of interaction x,-. In fact, we can

easily demonstrate that if the point of interaction x, is distributed accord-

ing to p(x), the corresponding values P,- are distributed uniformly in [0,1].

First define the probability distribution for P as

8’ ( P)dP = probability that P lies in dP about P

Since there is a one-to-one relationship between P and x [i.e., since P(x) is

a monotonically increasing function of x], we can write

@(P)dP=p(x)dx

X

xi

Fig. 9.1 [1 Sampling P,- from the cumulative distribution function.
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STATISTICAL SIMULATION (MONTE CARID) METHODS 1:] 537

But we recall from the definition given by Eq. 9.2 that

dP

P(X)— ‘d;

or

dP

dP—(Ec—)dx -p(x)dx

so that

@(P)=l

—that is, the values P, are distributed uniformly on the interval [0,1].

Hence we can just use our table of random numbers to select a value for

P, and determine

x,= -2,-'1n(1 —P,-)= —E,-'ln(l —€,-)

Actually, since the quantity (1 —P,-) is also distributed uniformly on the

interval [0,1], we might as well just determine x,v using

x,~= —Z,_lln£,-

In many cases, the functional form of P(x) is too complicated to invert

explicitly—in fact, it may be available only in a tabulated form. Then

interpolation methods can be used to obtain x=x(P). The next section

discusses sampling from probability distributions in more detail.

We have given two examples of how one can sample from the probabil-

ity laws governing a physical process (e.g., the type of interaction or the

probability that an interaction will occur). However one can also imple-

ment a variety of sampling procedures of other types in simulating a

neutron life history. Suppose, for example, that we wish to determine the

location at which a source neutron first appears.5 To be more precise, let

us consider a two-dimensional problem in which a source is distributed

uniformly across a circular area of radius R (e.g., fission neutrons appear-

ing in a fuel element). Then to sample the initial position of a source

neutron, we can choose two random numbers §1,§2E[0, l] and calculate

coordinates x,-, y,- as

xi=2(£1_0'5)R’ yi=2(€2_0'5)R

But of course not all such coordinates will lie in the circular area.

Therefore we simply reject any points x,-, y,- for which x} +y,-2>R2. In this
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538 [:1 COMPUTER SIMULATION OF PARTICLE TRANSPORT

Fig. 9.2 1:] Sampling from a circular area using the rejection method.

manner we can sample from a uniform distribution confined to the area

(see Figure 9.2).

Thus we can track the neutron history by determining its point of birth

as a source neutron, then finding the positions and types of interactions,

allowing the neutron to stream freely between interactions until a capture

or leakage event terminates the life of the neutron. We continue in this

fashion to simulate the case histories of a large number of neutrons using

such random sampling techniques. Then we estimate the quantities of

interest (e.g., detector responses or leakage rates) as averages over this

batch of case histories.

Through the use of sophisticated sampling algorithms and clever pro-

gramming methods, Monte Carlo computer codes have been developed

that can process tens of thousands of particle histories in complicated

geometries to allow a detailed treatment of space, energy, angle, and

time-dependent transport phenomena?"5 Unfortunately, however, vari-

ous other transport problems cannot be studied using such direct analogue

simulation methods because they involve events that occur with very low

probability. For example, in shielding problems, the events of most interest

(e.g., neutron penetration through a shield) occur very infrequently (some-

times with a probability as low as 10_'°). The direct simulation of such

events would require an enormous number of case histories (10‘0 at least)

and would be unthinkable even on the most sophisticated computer.‘6

In such problems, direct physical analogue simulations are simply not

sufficient. Instead, one must employ one of a variety of “variance-reduc-
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STATISTICAL SIMULATION (MONTE CARLO) METHODS El 539

tion” schemes in which the original problem is modified so that the event

of interest occurs more frequently. In this way most of the computation

time and cost are spent on cases leading to the event of interest and are not

wasted on uninteresting cases.

To develop these schemes, one must turn away from physical analogues

to an alternative application of Monte Carlo methods as a stochastic

method for solving the deterministic transport equation. That is, Monte

Carlo methods may be implemented not only as a stochastic method to

simulate stochastic processes, but as a stochastic method to solve determin-

istic equations, as well."3'9 It is this dual capability that makes Monte

Carlo methods so very useful in transport problems, since these are

amenable either to a stochastic analogue or to deterministic transport

equation descriptions.

In both approaches the key feature of a Monte Carlo calculation

involves the selection of random samples from specified probability dis-

tributions. Therefore we first discuss more thoroughly the ways of con-

structing such sampling schemes, the performance and interpretation of

averages over such sample populations, and the biasing of such sampling

procedures to facilitate the study of low probability events.

9.1.1 [1 Random Sampling Methods [1 We have noted that the key

aspect of Monte Carlo simulation involves the use of random sampling to

generate statistical estimates of the solution to physical or mathematical

problems. Therefore we begin with a brief discussion of random sampling

methods.

Random Number Generation [1 Of course we first need a large supply of

random numbers, g, distributed uniformly on the interval [0,1]. A variety

of methods can be used to generate tables of (approximately) random

numbers. These range from the sophisticated random number generators

used in modern computer programs'Hg to more primitive methods such as

selecting the last digit from the list of phone numbers in a New York City

‘telephone directory (this approach apparently was used by some scientists

who worked on the Manhattan Project).

" A typical Monte Carlo calculation usually requires so many random

numbers that an adequate random number table would far exceed com-

puter memory. Therefore Monte Carlo computer codes generate random

numbers as they are needed, using arithmetic operations such as the

congruential multiplicative method.” Such schemes actually generate only

pseudorandom numbers, that is, sequences of random numbers that will

repeat themselves after a large number of samples. For example, the

RANDU random number generator in the IBM Scientific Subroutine
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540 El COMPUTER SIMULATION OF PARTICLE TRANSPORT

Package has a period of 109. This should be kept in mind when running

very large Monte Carlo problems (which may require several hours of

central processing unit time), since these may generate enough case histo-

ries to run the risk of repeating the sequence of random numbers, thereby

generating correlated samples.

For our further discussion, we assume that we can generate a sequence

of random numbers 8, distributed uniformly on the interval 0 < 5, < 1.

Probability Distribution Functions“ El Consider a random variable x

defined on the interval a <x <b. Since we cannot predict with certainty

what value this variable will assume, we introduce the concept of the

probability distribution or probability density function p(x) governing the

random variable, which is defined such that:

p(x)dx= probability that x assumes a value be-

tween x and x + dx

For example, our random number table has the probability distribution

function

p(§)=l for 0<£<l

that is, the probability distribution is uniform on the interval [0,1]. More

generally, we are interested in distributions of random variables that are

not uniform. For example, recall that the probability of neutron interaction

in a distance dx about x is given by

p(x) dx = 2, exp( — 2,x) dx

The probability that a random variable assumes a value less than some

number x is given by the cumulative distribution function P(x):

P(x)E xdx’p(x’) (9.3)

Notice from this definition that P(x) is a monotonically increasing func-

tion of x and is restricted to the interval 0 <P(x) < 1. In particular, P(a)=0

and P(b)= 1. In a very similar manner one can define probability distribu-

tion functions and ' cumulative distribution functions of several random

variables (see Figure 9.3).

We use such distribution functions to characterize the probability of

different “events” in particle transport.3'5 To be more precise, we define an
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1IQ|_-___-_______

l x

a b

Fig. 9.3 El The probability distribution function and cumulative distribution

function.

event as something that happens to a particle (e.g., a collision event or

leakage through a surface). A case history or sample then is a sequence of

such events, beginning and ending with some preselected criterion (e.g.,

particles emitted from a source or particle capture).

We can easily specialize the concept of a probability distribution func-

tion to characterize a set of discrete, independent (mutually exclusive)

events. Suppose we assign to each such event E],E2,...,E,I a probability

p,,p2,...,pn. Then we construct a probability distribution function of a

random variable x to characterize these events as follows: First break up

the interval [0,1] as shown below:

1

p1+...+pn=l

l l l

0 Pi Pi + F2

_/“‘

JF-

Now if x E[O,pl), we say that event E 1 occurs, and so on. Hence we can

define the probability distribution function as a “step” function

p(x)=pi, P|+p2+"-+pi_l<x<pl+...+pi

Recall that in our previous example, we used this prescription to sample

particle interaction events by noting p, = 26/2,, pf = Elf/2,, and 11s = ES/Zr

The corresponding cumulative distribution function is a sequence of ramps

as shown in Figure 9.4.
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542 [:1 COMPUTER SIMULATION OF PARTICLE TRANSPORT

ptx) —_

1 1 1 1 l—-l x

P1 P1 + P2 ' ' - 4 1

Fig. 9.4 l] The probability distribution function and cumulative distribution

function characterizing discrete events.

Sampling from Probability Distribution Functions [I The selection of the

value of a random variable distributed according to a given probability

distribution plays a central role in Monte Carlo calculations. There are

several methods for performing this random sampling.

1 Sampling from discrete probability distributions. To sample from the

probability distribution characterizing a set of discrete events, we can

merely associate a sequence of uniformly distributed random numbers,

g,e[0,1], to the range of x as shown below:

£1 E: En

A A l A

r \l \ a

1 l 43% |

0 P1 P1+P2 P1+---+Pn=1

l l

E,- 1

°F

Then depending on the value chosen from the random number set, we can

choose an event E,-.

ii Sampling from continuous probability distributions. To sample from a

continuous probability distribution function p(x), we note the following

fundamental principle."3
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If p(x) is a probability distribution function defined on the interval

a <x <b, then

£=P(X)= f‘dx'rtx')

a

determines x uniquely as a function of £. If g is uniformly distributed on

0 < £< 1, the random variable x falls with frequency p(x) dx on the interval

(x, x + dx).

The demonstration of this result is straightforward. As we noted earlier,

the probability distributions of P and x can be related as follows:

@(P)dP=p(x)dx

But from the definition Eq. 9.3 of the cumulative distribution function, we

can write

dP

dP—(E)dx —p(x)dx

to find that P is distributed uniformly on [0, 1] (see Figure 9.5):

6.? (P) = 1

Therefore we can use a random number table of values £,-E[0, l] to

sample from an arbitrary distribution p(x) by “inverting” its cumulative

p(x) P(x)

|

l

|

l

|

|

l

11

l

l

l

l

b a X(Sl

Fig. 9.5 [:1 Sampling from the cumulative distribution function.

|

|

|

|
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544 El COMPUTER SIMULATION OF PARTICLE TRANSPORT

distribution function P(x) to find

xi=P —l(€i)

Example. To sample the distance to collision of a particle traveling

through a medium characterized by a total cross section 2,, we note

p(x) dx = 2, exp( — E,x)dx

Hence

£= P(x) = l — exp( — E,x)

or

x=P—'<s)=—E:'1n(1-o

Therefore we can select random numbers g, and sample the distance to

collision as follows:

x,-= —E,_'ln£,-

Example. Suppose we wish to sample the direction of a particle emitted

from an isotropic source distribution. We can separate the probability

distribution functions for each of the angles 0 and ¢ as follows:

sin 0

2

l e l

Edi? dgEd¢=P1(0)d0P2(¢)d¢

1 1

§d11Ed¢=M 11)d1m2(¢)d¢

where we have identified p.=cos 0. Since it and o are independent random

variables, we can sample them separately using the cumulative distribution

functions:

1 1

£1=P|(11)=f_”ldu’-2- = 5(t1+1)

¢ ,1 1

£2=P2(¢)=j(; d¢E=E

Therefore we can invert to find

cos 0 = 11 = 2£ l - 1

¢ = 271$;
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and then determine the direction cosines of the source particle as follows:

I], = sin 0 cos ¢, Sly = sin 0 sin ¢, S1, = cos!)

iii Indirect sampling methods. Frequently the cumulative distribution is

too complex or unwieldy to allow a direct analytical inversion to obtain

x= P_'(£). Then we must revert to numerical methods. For example, we

could use an iterative method such as the Newton-Raphson technique to

invert P(x). However it is more common to simply construct a table of

values of P(x,)= P, and use linear interpolation to invert:"6

P,—£

x=x,-—Pi—_P:(x,—xi_,), for P,-_I<£<P,-

iv Rejection methods. Another indirect method for sampling from dis-

tribution functions is the rejection method. Consider a given distribution

function p(x) defined on the interval a <9: <b. We begin by normalizing

this function as follows:

p(X)

w x =

” ( ) sup[p(x)]

so that p"(x) lies in the interval 0<p*(x)< 1. Now we select a pair of

random numbers (51)) and define

x'=a+£(b—a)

If p*(x')>17, we accept x’ as a sample value. Otherwise we reject the pair

(£11) and try again. In this way, all the points (x',r)) retained are uniformly

distributed below the curve p"(x) (see Figure 9.6). After many such trials,

the fraction of points x’ retained in the interval (x,x + dx) will be the ratio

of the areas:l

P*(X)dx = p(xfilx

~[ap"‘(x)dx ~l;p(x)dx =p(x)dx

Hence we can use this rejection method to sample points x’ distributed

according to p(x).

The efficiency of the rejection method can be defined as follows:

b

number of values of x’ selected = L p(x) dx

total number of trials (1, _ a)sup[ p] -

efficiency =
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546 [l COMPUTER SIMULATION OF PARTICLE TRANSPORT

p'tx)

(x' n)

)\ \

5

*w

er

Fig. 9.6 1:] Sampling using the rejection method.

Rejection methods are usually employed only if this efficiency is relatively

large (e.g., greater than %).

Example. Suppose we wish to sample the random functions cos0 and sin 0.

We first choose a pair of random numbers (ghgz) defined on the interval

[0,1] and compute

x1=2£1_1’ x2=2€2"l

We then reject all points (xI,x2) that fall outside the unit circle (see Figure

9.7) so that 0 will be sampled uniformly between 0 and 2w. Finally we

calculate ‘

cos0=———"'—fi, sin0=——f2—W

(xi+ xi) / (xiflf)

In this case, the efficiency of the rejection method can be calculated as the

ratio O/[]=w/4.

v Other approaches. A variety of ingenious methods have been devel-

oped for sampling from specific distribution functions such as the

Maxwell-Boltzmann distribution or the black body spectrum. The inter-

ested reader should refer to Carter and Cashwelll for examples and further

references.
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Fig. 9.7 1:] Sampling for sin 0 and cos 0 using rejection methods.

17w Use of Monte Carlo Techniques to Evaluate Detemtinistic Mathematical

Expressions [I We can also use Monte Carlo (random sampling) methods

to evaluate mathematical expressions such as integrals or to solve de-

terministic (nonrandom) equations.

i Evaluation of integrals. Consider the integral

I=fbdxf(x)

Since the value of this integral is just the area under the curve f (x), if we '

could sample from a set of points distributed uniformly over the rectangle

bounding f (x) (see Figure 9.8), it is apparent that the probability that these

points will land below f (x) is just given by the ratio of the area below f (x)

to the total area. '

Therefore we choose a pair of random numbers (5,,ni) distributed

uniformly on the interval [0,1] and scale these to determine a point (x,-,y,-)

from a set distributed uniformly on the bounding area:

xi=a+(b_a)€i

yi=fmaxni

We next test to see whether this point falls below f(x): keep (x,,y,-) if

f (x,-) >y,-—otherwise, reject the point.
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fmu '—

7X

t1

Fig. 9.8 [1 Use of sampling methods to evaluate definite integrals.

We continue on and note that the ratio of points selected to the total

number of points sampled is approximately equal to the ratio of the area

under the curve to the area of the bounding rectangle:

b

number selected ’ 1; dxf(x)

number sampled = (b — a) fmax

Hence we can use this procedure to estimate the value of the integral in a

straightforward manner. It should be noted that no conditions on the

smoothness of f (x) are required for this procedure aside from measurabil-

ity and boundedness. It should also be noted that this use of random

sampling to evaluate integrals is just an application of the rejection method

we discussed in the preceding section.

ii Evaluation of averages (expectation values). Frequently we are inter-

ested in calculating the mean or expected value of a function \l/(X) of a

random variable x. If x is described by a probability distribution function

p(x), we define the expectation value E [41] by

EM 5 bdx¢(x)p(x) (9.4)

But we also note that 41 itself can be interpreted as a random variable. That
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is, one can select a sequence of N values x,- distributed according to p(x)

using random sampling methods, then evaluate the average

_ 1 N 1 N

¢~=W§l¢(X.-)EW 2111/1

A fundamental result from the theory of probability"3 (the “law of large

numbers”) states that it), approaches the true expectation value E [o] for

large N

‘171v _’ EH’]

large N

Therefore by taking more and more samples, we expect our estimate of

E [1,11] to become more and more accurate. (We make this discussion more

precise momentarily by appealing to the central limit theorem.)

We can also apply this approach to evaluate integrals by factoring the

integrand f (x) into two functions il/(x) and p(x)

1= fbdxf(x)= fbdxirvptx)

where p(x) is chosen such that

fbdxp(x)= 1. p(x) >0

Since p(x) now has the properties of a distribution function, we can

identify 1 as an expectation value

I = E [ 5b]

and therefore compute it by sampling rl/(x) at random points x,- distributed

according to p(x):

_ 1 N

I~¢1v _ W [2] ‘l’(x1)

Here we note that our earlier procedure for evaluating integrals using

random sampling is obviously just a special case with

p(x>=(b-a>"'

uv=o—onv
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550 1:] COMPUTER SIMULATION OF PARTICLE TRANSPORT

However in this method we “scored” a value of O or 1, depending on

whether the random variable was greater or less than f (x). In the second

method, a score of ¢(x,) is tallied for every point x, selected from a

distribution p(x).

iii Solution of integral equations. Consider the inhomogeneous integral

equation

f(x)= fdx’k(x’,x)f(x’)+s(x) (9.5)

Suppose further that we are interested in evaluating a functional of the

solution to this equation that can be written in the form

J= fdxg(x)f(x)

For example, Eq. 9.5 might be the integral transport equation and J a

detector response.

To estimate J using random sampling methods, we first normalize the

inhomogeneous source term s(x) and the kernel k(x’, x) such that

fdxs(x)= l, ~[dxk(x',x)=l

[This can always be accommodated by rescaling g(x).]

To identify a random sampling scheme, let us first formally solve for the

unknown f and therefore for J using a Neumann expansion (assuming for

the moment that the kernel k(x’,x) is suitably well behaved):

f=§n r.=s. f.=fdx'k(xcx)f._.(x')

n=0

or

J= fdxg(x)[ 208(8)]

Now notice something: we can interpret s(x) as a probability distribution

characterizing a source, and k(x’,x) as a “transition” probability distribu-

tion characterizing the distribution of x resulting from an event that occurs

at x’. In this sense, then, each of the 'fi,(x) can be interpreted as the

probability distribution of x after n events. In this manner we can interpret

J as the sum of the expectation values of g(x), each calculated with respect
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to a different number of events:

J= i fdxg(x)f..(x)= i 15.18]

n=0 "=0

But we can see how to estimate this quantity using random sampling

techniques. We merely simulate a number of random multiple event

histories. For each such history, we begin by sampling for a value of x0

from s(x), then sampling for xl from k(xo, x), for x2 from k(x,,x), . . . ,for x,I

from k(x,,_ ],x), and so on. After simulating a number of such histories, we

can estimate the contributions to J from n events by averaging over the

histories, then sum over the number of events to estimate

($2182.88)

Of course, since it is necessary only to simulate an individual history until

its “score” g(x,f)—that is, its contribution to J—is negligible, the summa-

tion over event number n is limited to a finite value M,- (dependent on the

individual case history):

J

111

% 2080.")

We discuss this particular application of Monte Carlo methods in more

detail in the next section as we turn to the solution of the integral transport

equation.

Statistical Analysis [I Let us return for a moment to the question of how

accurately we can expect to be able to estimate an expectation value E [41]

by averaging the values of .p for N case histories. We can appeal to a very

important theorem from probability theorym"5 (which we state here in a

simplified form).

The Central Limit Theorem. The probability that the error in the estirnate

of an expectation value by an average over N case histories |E [111]—¢N| is

less than an amount a approaches

PllElitl—JNIQ} Njw(%)l/2£EW/adleXP(-l2i) (9-6)
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552 13 COMPUTER SIMULATION OF PARTICLE TRANSPORT

for large N. Here, 02 is the variance of 11/ defined by

CZEE[tI/2] —E2[1[/]Evar[tlr]

(and o is referred to as the standard deviation).

That is, the central limit theorem implies that the statistical distribution of

values assumed by 117,, about E [111] will approach a normal or Gaussian

distribution for large N. Furthermore, the statistical uncertainty associated

with this estimate depends on both the sample size N and the variance 02.

This theorem has a number of extremely important implications for Monte

Carlo calculations. First note that although P->l for fixed 6 as N—+oo

(which is consistent with the law of large numbers), the error in an estimate

decreases essentially as N _ '/2. That is, to reduce the error by a factor of

10, we must increase the sample size by a factor of 100. This represents a

major drawback of the Monte Carlo method.

Let us make this more precise by identifying the limiting probability in

the central limit theorem as the confidence level 3'5 of an error estimate

. _ 2 1/2 {W /0 t2

conf1dencelevel=(;) f0 dtexp( 2 )

That is, a sample average it?” produces an estimate of E [11] with a

confidence of this amount that the error is less than i 12.

One can actually estimate“ the fractional square error associated with a

given estimate 117,, as

.ZEvarlll=i[Ll_,];;{Z_,l

E2111] N 5214*]

It is therefore not surprising that reducing the statistical error in a Monte

Carlo estimate by increasing sample size can be very expensive because of

this N _ V2 dependence.

But notice that the error also depends on the variance of the quantity of

interest. If we could somehow reduce this variance, we could reduce the

statistical error characterizing a Monte Carlo estimate without increasing

the sample size.

Of course in a direct simulation of a physical process such as particle

transport, the variance is determined by the physical laws governing the

process. But if we could manage to replace this physical analogue with an

artificial problem that yields the same expectation E [41], but with a smaller
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variance var[\l/], we could dramatically increase the efficiency of a Monte

Carlo calculation.

This variance reduction concept plays a very central role in the solution

of transport problems using Monte Carlo methods. Without such tech-

niques, the sample size required by a direct physical analogue Monte Carlo

simulation would frequently be prohibitive. We discuss the more popular

variance reduction methods in the next section in connection with the

specific application of Monte Carlo methods to particle transport prob-

lems.

9.1.2 El Application of Monte Carlo Methods to Particle Transport [:1

One usually thinks of a Monte Carlo calculation as a statistical simulation

of a number of particle histories. However we have noted that this direct

physical analogue approach can entail severe difficulties. It may require an

excessive number of samples (hence computation time) to achieve the

desired accuracy. It is frequently awkward to modify a physical analogue

simulation to permit variance reduction methods without introducing

unwanted bias into the results of interest.

For that reason, many modern Monte Carlo transport computer codes

develop sampling procedures from the particle transport equation (usually

in integral form) rather than as direct analogues to the physical transport

process.

Physical Analogue Approach [1 Since particle transport is a stochastic

process, it is directly amenable to simulation by random sampling

methods. As we noted in our introductory example, certainly the simplest

and most direct manner in which to develop Monte Carlo sampling

schemes to describe particle transport is to simulate the detailed physics at

each point in the history of a particle. No reference to the transport

equation ever need be made.

Therefore we simply require a probabilistic description of what can

happen to a particle at each point in its history. This would entail not only

a detailed library of microscopic cross section information, but as well the

specification of geometric boundaries and material compositions. We

return later in this section to discuss how such data are utilized in Monte

Carlo calculations.

Monte Carlo Calculations Based on the Integral Transport Equation CI The

most common procedure for developing a Monte Carlo transport calcula-

tion begins with one of the various forms of the integral transport equation
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554 [I COMPUTER SIMULATION OF PARTICLE TRANSPORT

(cf. Section 2.2.5). For convenience, we utilize the time-independent in-

tegral transport equation for the collision rate densityl (although we could

just as easily begin with the integral equation for emission densitieslz or

include time dependence or a multigroup format)

f(r.E.fl)= £04181“, mica-ms)

>< fdE’fdfi'w

2,(r’,E’) f("E’nmw’E’m

We can rewrite this equation in a form similar to Eq. 9.5

f(x)= fdx’k(x’,x)f(x’)+s(x) (9.7)

by identifying:

x=(r, E, f2) as the particle phase space coordinates

s(x)=first-flight collision rate density due to sources

k(x’,x)=next flight collision rate density at x due to collision at x’

f (x)=particle collision rate density

We further suppose that we wish to calculate some function of f (r, E, Q)

(e.g., a detector response), which can be written as

J=fd3rfdEfdQ ifg:§;f(r,E,SAZ)=fdxg(x)f(x)

Let us begin by factoring k(x’,x) as

k(x’,x) E [ l - Y(X’) ]n(x')B(x’,x)

where 7(x’)Ecapture probability at x’ and n(x’) and B(x',x) are a normal-

ization factor and a normalized collision kernel defined by

fdxk(x',x)

"(X )E k(x’,x)

,B(x’,x) E

fdx"k(x’,x")

G
e
n
e
ra

te
d
 f

o
r 

g
u
e
st

 (
U

n
iv

e
rs

it
y
 o

f 
M

ic
h
ig

a
n
) 

o
n
 2

0
1

3
-0

3
-0

8
 1

8
:4

7
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
4

0
3

1
6

4
0

1
C

re
a
ti

v
e
 C

o
m

m
o
n
s 

A
tt

ri
b

u
ti

o
n
  

/ 
 h

tt
p

:/
/w

w
w

.h
a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
cc

-b
y



STATISTICAL SIMULATION (MONTE CARLO) METHODS El 555

Next we formally solve the integral equation (9.7) using a Neumann

expansion to find

f(x)= fdx..fdx.- ~ - fdXn-is(xo)k(xo,xr)k(xpxz)' - - k<x._..x)

so that J can be expressed as

oo

1= 2 fax.- - - fdx.s<x.>[1- You] 8088.)

n=0

. . - [1—Y(X,,_1)]B(xn_l,xn)y(xn)w(xo. . .xn)

where we define

' 8(x.)

wx-HxnE x x,,_

( 0 ) fix”) "'I( 0) "'I( I)

In this way, we have written J in a form that suggests a random walk

sampling scheme for its evaluation:

i Sample s(xo) for the initial coordinates x0 of a particle history.

ii Sample y(x,,_,) for termination at the nth collision.

iii Sample ,B(x,,_|,x,,) for the next collision point, given that the chain

continues.

Then we can identify

Well-7(8)]Bwxo~ [1—Y(Xn_1)lB(X,._1,x,.)r(x,.)}dxo'"dxn

as the probability that the initial coordinates for the first collision are in

dxo, second collision in dx1,. .., and so on, until the chain terminates at the

(n+ l)st collision. We also note that w(x0,...,xn) is the “score” for such a

history in the Monte Carlo calculation of J.

But we now see that

J= ; fdxo-H fdxn{---}w(xo,...,xn)=E[w]

is just the expectation value of the score. Therefore we can estimate J by

just sampling a number of histories, computing w for each history, and

averaging these scores as

l . .

J; W— w(x6,...,x,:)

I
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556 13 COMPUTER SIMULATION OF PARTICLE TRANSPORT

where xo',xl", . . . ,x; are sampled from distributions given by s(xo),

B(x,,_ l,x"), and n is determined by y(x,,).

We can reinterpret this sampling scheme in ‘more physical terms by first

selecting the initial particle coordinates ro,Eo,SZo by means of sampling the

first collision source s(r, E, 82). Then we determine the flight distance to

first collision R by sampling

2100’ E0) expl _ “(70, R’ E0’ 90)]

and use R and (ro,IAlo) to determine the location of this collision as

r1 = ro+ R (Io.

At this point we could sample from the capture probability y(ro,E1)=

2,,(ro, E l) / 2,(ro,E l) to see whether the particle is captured in the collision

so that the history should be terminated. In practice, however, it is

extremely inefficient to terminate particle histories because of capture

events. Instead it is common to continue the particle history, but to reduce

the particle “weight” or score by the noncapture probability [1 —y(x,)]=

Z,(r,,Eo)/2,(rl,Eo). That is, all particles are forced to scatter at r,, and

their weight is reduced accordingly. A

Next a new particle energy El and flight direction 0, are selected by

sampling from the scattering distributions. The energy E1 is sampled from

1

m Zs(Eo—)E,

while the flight direction 0, is sampled from

A A A A A — l

2,(E,,_>E,,rzo_>n)[ fdfl Es(Eo->El,flo—>SZ)

This sampling procedure is applied to successive collision events until

the random walk is terminated because the particle’s weight has been

reduced below some cutoff value, or because the particle has escaped from

that portion of phase space associated with a particular problem. All the

particle history’s contribution to J is then summed and recorded, and the

next history is initiated.

Variance Reduction Methods [1 The application of Monte Carlo methods

to the direct simulation of transport processes in which rare events are

important (e.g., radiation shielding) is very inefficient because most com-

putation time is spent on more probable particle histories that do not

contribute significantly to the desired result. Such physical analogue
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STATISTICAL SIMULATION (MONTE CARDO) METHODS 1:] 557

calculations not only require enormous sample sizes to yield results of

sufficient accuracy, but they can also push the problem computation

requirements beyond the capability of random number generators, possi-

bly giving rise to correlated samples. That is, one is bounded by a

maximum sample size that is dictated not only by computational (or

economic) feasibility, but as well by the finite period of random number

generators.

Therefore it is of great interest to determine whether the error associated

with a Monte Carlo calculation can be reduced without necessarily increas-

ing the sample size. Such errors arise from two primary sources:

i Numerical errors. Examples occur in programming strategy; another

case is roundoff error.

ii Statistical uncertainty. This is associated with sample size and vari-

ance.

We can quantify the efficiency of a Monte Carlo calculation by defining

its “Q-value”'9

var[tl/] )

= T

Q ( PM

where T is the average computation .time required per sample. This

quantity gives the time needed on the average to achieve a relative error of

100%. It is evident from this expression that we can increase the efficiency

of a Monte Carlo calculation either by improving the programming

strategy (decreasing the computation time T required per sample) or by

reducing the variance 02 of the calculation.

We focus our attention on variance reduction methods. In essence these

methods attempt to bias the original problem so that the regions of phase

space that contribute most to the desired answer are sampled most fre-

quently.

i Importance sampling. To illustrate the general idea, suppose we wish

to evaluate the expectation value of a random function

E111] = fa bdx1I/(x)p(x)

The essential goal will be to attempt to reduce the error by reducing the

variance

"25 Wl-Ezltl
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558 I] COMPUTER SIMULATION OF PARTICLE TRANSPORT

To this end, let us sample x from a different probability distribution

function p(x). To correct for this, we assign a weight for each point x,

PM

W“) E to.)

and score our samples as \,17(x,-)= w(x,-)\l/(x,-) rather than just as tI/(x,-). In

this way we preserve the expectation value

EM =fdxt<x>r<x>=fdw<x>p<x>=151i1

However the variance will be different:

- _ b - _ _ 1, M ..

Elm—fa dX1P2(X)p(x)— [a dxl m) lizmnufilrl

so that

62=El¢Zl-Ezltl7l=Eltlzl-Ezlttl

Since 02>0, it is apparent that if we can choose p(x) such that p(x) / 13(x)

< 1 over an important region of phase space for E [ti/2], we can reduce 02.

Actually, if we could choose1

~ _P(x)\l’(x)

p(x)_

we would find that

62=E1¢21—E21i1=0

But of course we do not know E [41]. Rather, since we will calculate

- - 1 N _

E[¢]=¢~= w 2 ¢(x.-)

i=1

we can try to choose p(x) such that

¢(X)17(X)

—— ~constant

p(x)

Example. Consider again our inhomogeneous integral equation (9.7)

f(x) = fdx'k(x’,x)f(x’)+s(x)
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STATISTICAL SIMULATION (MONTE CARLO) METHODS El 559

with the goal of calculating

r= fdxg(x)f(x)

We can bias this problem by defining new weighting functions

§(x)=s(x)1(x)[ fdx's(x')1(x')]_'

and

~ , _ k(x’,x)](x)

k( x ,x) — Rx’)

where I(x) is an “importance function” that places most emphasis on the

regions of phase space that contribute most to J. We then sample from

S(x) and k(x’,x) to construct the collision expansion solution for J.

One can demonstratel that the optimum choice of weighting function is

the solution f1(x) to the adjoint problem

r*(x)= fdx'k<x.x')f*<x'>+g(x)

Then, in fact, 62 is zero—a zero-variance sampling scheme. But of course

we usually do not know f1(x). Rather, we must attempt to construct

estimates of fl(x) to develop a suitable importance sampling scheme.

Frequently a deterministic solution of the adjoint transport equation is

used to provide a suitable importance weighting function 1(x) (e.g., a low

order discrete ordinates calculation).

ii Splitting and Russian roulette. We can artificially bias a Monte

Carlo calculation to emphasize those particles moving toward more im-

portant phase space regions by replacing each such particle with n par-

ticles, each with a new weight reduced by l / n. In a similar fashion we can

randomly terminate particle histories moving toward less important phase

space regions using a Russian roulette procedure.“5

To be more precise, consider a deep penetration shielding problem in

which we are most interested in the very few particles that penetrate deeply

into the medium. To implement a splitting procedure, we assume that any

particle that manages to penetrate to a depth xi is split into n particles (see

Figure 9.9), and each of these particles is followed with a weighting

reduced by l /n (to avoid biasing the score estimate). We continue in this

fashion, implementing a splitting procedure at various penetration depths

x,. This enables us to process more deep penetration histories while
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560 El COMPUTER SIMULATION OF PARTICLE TRANSPORT

Z

Fig. 9.9 El Particle splitting.

\

<1

<

A

*2

O

_.k

preserving the total particle weight. It is common to split particles two for

one at boundaries one mfp apart.

One can similarly decrease the number of particle histories moving

toward phase space regions of lesser importance using a Russian roulette

procedure. That is, if a particle in our shielding problem crosses a splitting

plane x,- in the opposite direction, it is allowed to survive with a probability

l/n and a weight scaled by n. One can actually assign each region of a

problem an importance parameter to determine whether splitting or Rus-

sian roulette should be used.

Splitting and Russian roulette are the most common variance reduction

methods. Most Monte Carlo codes have built-in options to implement

these methods if desired. Since these are the only biasing methods that

leave the probability distributions of the physical analogue model un-

changed, they are the safest variance reduction methods to use.

iii Choice of estimators. In a physical analogue simulation, scoring

occurs whenever events happen in the phase space region of interest. But

we have noted that this can be quite inefficient if our interest is in very low

probability events. Therefore it is common to choose nonanalogue “estima-

tors” that allow a particle to score (contribute to the desired answer)

without actually entering the phase space region of interest."3

Suppose we are interested in the response of a detector characterized by

a cross section 2,, distributed over a phase space volume Vc. Several of the

more popular estimators are listed below:

Collision estimators: score W(Zd/2I) for each collision event

in V6

Last-event estimator: score w(Ed/EC) only when the particle

history is terminated by a capture in V0

Flux or track-length estimator: score wfgds’Edfi) for each track length s

in V6
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STATISTICAL SIMULATION (MONTE CARLO) METHODS 1:] 561

iv Some final remarks on variance reduction methods. In all these vari-

ance reduction schemes we have altered the sampling scheme suggested by

a direct analogue model by multiplying the particle weight of the analogue

scheme by a correction factor at each stage of the sampling. That is, all

these schemes are essentially variations of importance sampling.

One should be extremely cautious in implementing such altered sam-

pling schemes. Frequently they increase rather than reduce the variance,

thus leading to an increase in statistical error. Furthermore, even when a

scheme can lead to a variance reduction, it may be so complicated that the

computation time required for its implementation may exceed the time

required to achieve a comparable error reduction by simply following more

particle case histories.

Monte Carlo Computer Codes [1 Monte Carlo transport calculations are

implemented via complex and versatile computer programs or codes. For

example, the MORSE transport code12 (for multigroup Oak Ridge

stochastic experiment) is a state-of-the-art Monte Carlo code that is

capable of describing either neutron or gamma transport in three-dimen-

sional geometries. The code accepts a variety of cross section input data

and provides extensive statistical analysis of the results. It can be used to

solve either the forward or adjoint transport equation in time-dependent or

time-independent form (including criticality problems). It contains a num-

ber of variance reduction options.

The structure of such a Monte Carlo computer code is diagrammed in

Figure 9.10.‘2 One begins by reading into the program necessary problem

definition data (geometry, source characteristics, cross section data). The

code then generates and stores a batch of source particles using the

SOURCE module. It next selects one particle from this batch and begins

the random walk simulation, transporting the particle from collision to

collision, splitting or killing the particle by Russian roulette or emitting

secondary particles when necessary (and storing them in the SOURCE

memory for further processing). Termination of random walk histories

occurs when the particle leaks from the system, reaches an energy or time

cutoff, or is killed by Russian roulette. During the random walk calcula-

tion, the GEOMETRY module tracks the particles from collision to

collision, and the COLLISION module determines the type and con-

sequences of collision events. The ANALYSIS module continually moni-

tors the random walk histories, computing contributions to the desired

answer during the tracking process (i.e., keeping “score”).

It is appropriate to review several of the more mechanical aspects of

such Monte Carlo transport codes.

i Geometry. Unlike deterministic methods such as discrete ordinates

or collision probability methods, the computational requirements of Monte
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562 E] COMPUTER SIMULATION OF PARTICLE TRANSPORT

[ ANALYSIQfZEOUF-tcs 1(—

SECONDAHIES

ANALYSIS GEOMETRY COLLISION

TRACKING ROUTINE ANALYS'S

CROSS

SECTION

I OUTPUT I

Fig. 9.10 [1 General organization of a Monte Carlo transport code.

Carlo calculations do not increase dramatically in passing from one- to

two- or even three-dimensional geometries. In fact, perhaps the primary

motivation for the extensive use of Monte Carlo methods in analyzing

transport problems is that they are presently the only methods capable of

treating complicated three-dimensional geometries.

One of the critical features of any Monte Carlo code is the manner in

which it handles geometric information. Region boundaries are conven-

tionally specified as quadratic surfaces of the form"l2

Ax2+ By2+ C12+ Dxy+Eyz+Fzx+ Gx+Hy+Jz+K=0

Typically this information is handled and applied to the particle transport

simulation by a separate module in the computer code.

It is customary to utilize Cartesian coordinate systems (even to describe

curvilinear geometries), since this greatly simplifies the calculation of

particle trajectories. To illustrate, consider a particle that streams freely a

distance s between‘ collisions. Then if (x, y,z) are the coordinates of the

first collision and I) is the flight direction following this collision, we can

easily calculate the location of the next collision as

x'=x+flxs, y’=y+SZys, z’=z+9,s
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STATISTICAL SIIWULATION (MONTE CARLO) NIETHODS El 563

since the direction cosines do not change along the flight path (an

advantage of Cartesian coordinates).

ii Time dependence. It is a trivial task to include time dependence in a

Monte Carlo calculation, in sharp contrast to deterministic numerical

methods for solving the transport equation. One merely advances the time

of the particle after each flight and scores in the appropriate time bins for

the quantities of interest.

iii Source sampling. One can easily bias an external source distribution

using an importance function I(x):

S(x)= JLKL, Enron)

fdxs(x)l(x)

One then samples S(x) ~for the coordinates of a source particle, and assigns

a weight w(x)= S(x)/S(x) to this particle.

iv Attenuation and leakage. Recall that since the probability distribu-

tion for a collision in path length air about s is

p<s)ds=2.(s)exp[ — [0 win]

we can detemiine the cumulative distribution function as

P(s)= 1 —exp[ — fsds’2,(s’)]

0

and invert to find our sampling prescription

f8d8’2,(s')= -ln[ 1 —P(s)] = —1n.g

0

since both P(s) and l — P(s) are uniformly distributed on the interval [0,1].

Since most systems under consideration are sectionally homogeneous,

one can develop a somewhat more systematic sampling procedure1 as

follows. First choose a random number §E[0,1]. Then if £,->exp(—Z,|s,),

where sI is the path length to the first boundary of region 1, we choose

collision point

s,-= —2,_l ‘1115,.

However if {- < exp(— 2,|s,), the particle will reach the next region without

suffering a collision. Therefore we advance the particle coordinate to this

next region and repeat the procedure (see Figure 9.11).
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564 El COMPUTER SIMULATION OF PARTICLE TRANSPORT

Fig. 9.11 [:1 Particle tracking in sectionally homogeneous media.

v Collision events. One typically breaks up the sampling procedure to

determine the consequences of a collision event. We illustrate this for

neutron transport.

One begins by determining the type of nucleus involved in the collision

by sampling according to the isotopic probabilities given by p,-=2f")/Z,

where the index i refers to the nuclide type. Next one samples for the type

of event using the probabilities p," = inf/0,‘, where k is the index for event

type. Further sampling will depend on the type of event selected.

If one selects a capture event, the particle history could be terminated at

the collision. However, as noted earlier, it is more efficient to simply

reduce the particle weight by the noncapture probability and sample for

the type of collision only from noncapture events. For example, if a

scattering event is selected, one would sample the differential scattering

cross sections to determine the energy and flight direction of the scattered

neutron. If the sampling yields a fission event, one samples for the number,

energy, and direction of fission neutrons emitted in the fission process.

Monte Carlo Code Systems [1 A wide variety of flexible and powerful

Monte Carlo transport codes have been developed for the analysis of

neutron and gamma transport.”15 Although these codes—more specifi-

cally, code systems, since they contain a number of modules to facilitate

geometry specification, cross section preparation, and statistical analysis—

are under continuous development, we mention several of the more popu-

lar Monte Carlo transport codes here.

MORSE (ORNL-RSIC)12 The MORSE code is an extremely general

and flexible code capable of describing neutron, gamma, or coupled

neutron—gamma transport in arbitrary geometries. It is written in multi-
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STATISTICAL SIMULATION (MONTE CARLO) METHODS El 565

group form to facilitate its compatibility with evaluated nuclear data

libraries (e.g., ENDF/B or ENDL) and can use cross section libraries

prepared for discrete ordinates codes such as ANISN or DOT. It is

capable of analyzing the forward or adjoint transport equation in either

time-dependent or steady-state form (including criticality calculations),

and it contains a variety of options for variance reduction.

MCN, MGN, MCNG (LASL '3' '4 These Monte Carlo codes are designed

for neutron, gamma, and coupled neutron—gamma transport, respectively.

They contain most of the features of MORSE, except that they use a

continuous rather than a multigroup energy format. They also contain

special provisions for handling thermal neutron scattering (as described by

the free gas kernel).

TART (LLL)15 A general purpose Monte Carlo transport code based on

a multigroup format (although a continuous energy treatment of secondary

neutron emission is included).

A variety of modified Monte Carlo methods have been developed for

specialized problems? For example, when comparing the results of two

similar problems whose differences would ordinarily be less than the

statistical error of independent Monte Carlo estimates (e.g., temperature

effects on neutron absorption), it is common to employ correlated Monte

Carlo methods in which the same case histories are used to analyze both

problems. One can also decompose the original problem into two problems

—one of which is easy to solve by deterministic methods and a perturba-

tion that can be handled as a correlated Monte Carlo calculation. The use

of hybrid methods, which combine both deterministic and Monte Carlo

methods by using the former to develop biasing schemes for the latter, is

also increasing. For example, a two-dimensional discrete ordinates calcula-

tion of the adjoint flux might be performed to determine the importance

weighting for a three-dimensional Monte Carlo calculation.20

9.1.3 [:1 Application of Monte Carlo Methods to Collective Transport

Processes El It should be apparent that Monte Carlo transport methods

are most ideally suited to linear (test particle) transport problems in which

individual particle histories can be simulated one at a time. They are rather

cumbersome to apply to the description of collective phenomena in which

large numbers of particles interact simultaneously. Nevertheless, Monte

Carlo methods have been used extensively in the field of gas dynamics.

The simplest such applications have been to free molecular flow prob-

lems in which particle interactions are ignored. One can either simulate
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566 l] COMPUTER SIMULATION OF PARTICLE TRANSPORT

these processes directly, as one would do in test particle problems, or

develop sampling schemes from the integral equation formulation of free

molecular flow problems.”

For smaller Knudsen number (Kn = mfla/ L) one must take into account

particle interactions. One approach involves an iterative treatment in

which each particle is regarded as a test particle interacting with a

background characterized by an assumed distribution function. This dis-

tribution function is then recalculated from the test particle information,

and the test particle calculation is repeated until convergence is achieved.22

Yet another approach divides the gas into cells, then samples for the

probability of a collision event among each pair of particles in the cells.23

When collisions are selected, new particle velocities are sampled from the

corresponding collision cross sections. Each collision event advances a

time counter by the average collision time. After a certain total ac-

cumulated time, the particles are allowed to advance to new positions by

streaming, and the sampling process is repeated. At each time step various

statistical averages are performed to calculate macroscopic quantities of

interest (e.g., densities, local flow velocities, temperatures).

Such Monte Carlo methods have become quite popular for a variety of

complicated flow problems including shock wave propagation and high

speed flows past complex geometrical shapes.

9.1.4 El Some Final Remarks [1 Monte Carlo methods have gained a

reputation as the “last resort” in analyzing transport problems. Since the

degree of detail in the description of the transport process (e.g., geometric

dimension, cross section detail, time dependence) does not significantly

affect the computer time necessary to perform a Monte Carlo calculation,

it is frequently the only way in which one can analyze complex problems

that have exceeded the capability of deterministic methods (e.g., discrete

ordinates).

However Monte Carlo methods do suffer from serious drawbacks. The

major limitation is that of statistical error. We have noted that this error

decreases as only the square root of sample size. Therefore Monte Carlo

calculations can be extremely expensive if accurate results are required.

This feature is compounded by the relative speed of a Monte Carlo

calculation, which is generally quite slow because of the large amount of

data handling necessary in tracking a particle case history. The coding

logic of a Monte Carlo program is also formidable."2

Furthermore it should be noted that Monte Carlo methods are most

suited for determining integral quantities (e.g., weighted averages of the

flux or leakage rates through specified surfaces). They are quite inefficient
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DETERMINISTIC TRANSPORT SIMULATION METHODS El 567

at determining local or distributed quantities such as density or reaction

rate distributions.

Finally, it should be stressed that the use of a large Monte Carlo code

calls for a significant amount of effort, including input preparation to

specify the problem of interest, sufficient experience to determine the

degree and type of variance reduction required, and an adequate under-

standing of the limitations of Monte Carlo calculations to assess the

significance of the results. In many cases, the application of Monte Carlo

codes to analyze transport problems is more an art than a science. For this

reason, Monte Carlo methods are generally employed only when there is

no other suitable method available.

9.2 [II DETERMINISTIC TRANSPORT SIMULATION METHODS El

Monte Carlo methods are most ideally suited for simulating a linear

transport process in which case histories of particles can be traced one at a

time. It would be quite awkward to use such random sampling methods to

simulate the dynamics of collective transport processes such as gas or

plasma dynamics in which large numbers of particles interact simulta-

neously (although Monte Carlo methods can be used to simulate the

equilibrium properties of such systems, as shown below).

A more direct approach to simulating the dynamics of such collective

phenomena is simply to solve the microscopic equations of motion char-

acterizing the particles using finite difference techniques. That is, by taking

advantage of the computational power of modern high speed computers,

one can investigate the macroscopic behavior of a fluid by solving the

microscopic many body problem. In essence, the only input necessary is the

detailed interaction potential between particles.

The first such microscopic dynamics simulations were performed at the

Lawrence Livermore Laboratory by Alder and Wainwright“ in the late

1950s to simulate the behavior of dense gases and liquids by solving the

equations of motion characterizing systems of rigid sphere particles. These

studies were subsequently extended to systems interacting by way of more

general potentials by Rahman25 and Verlet26 during the mid-1960s. Since

most of the initial attention was directed toward simulating the behavior of

dense gases and liquids, the microscopic dynamics simulation came to be

known as the molecular dynamics method. Closely related methods have

been developed in a wide variety of other fields including the simulation of

plasma dynamics, lattice vibrations in solids, and polymer structure and

dynamics.

In fact, molecular dynamics simulation today is competing rather di-

rectly with more conventional experimental measurements in providing
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568 El COMPUTER SIMULATION OF PARTICLE TRANSPORT

information about the behavior of many body systems. In many ways,

such computer simulation models are superior to laboratory experiments

because they can give essentially exact data on the macroscopic behavior

of well-defined models, as well as additional information of theoretical

interest that may not be accessible to experimental measurement. There is

little doubt that molecular dynamics simulation has been the major im-

petus for the upsurge in activity that has been experienced in the field of

nonequilibrium statistical mechanics during the past decade. It is also

becoming more apparent that certain types of transport problem—notably

those arising in plasma physics—are so complicated that computer simula-

tion has become the necessary bridge between experimental measurements

and theoretical interpretation.

9.2.1 El Microscopic Dynamics Methods (Molecular Dynamics) El To

simulate the dynamics of a fluid of particles, we can consider the dynamics

of a system of N particles as they interact within a cell of fixed volume.27

The essential idea is to integrate the equations of motion characterizing the

particles as they interact, moving about the cell. Typically one employs

periodic boundary conditions on the cell (see Figure 9.12) so that as one

particle leaves the cell, its mirror image enters from the opposing

boundary.

Since a significant amount of effort is required to compute the forces

acting on each of the particles during the integration of the equations of

motion, one is restricted to rather small sample sizes (typically less than

1000 particles). Generally one chooses cubic cells with N =4n3 particles,

where n is an integer (corresponding to systems of 256, 500, 864, etc.,

particles).

A number of investigators have studied the dynamics of particles inter-

acting through hard sphere (short range) potentials.“ Such systems are

particularly simple to analyze because the particles stream freely between

collisions. One can treat the time evolution of such a system as a sequence

of binary, elastic collision events.

The study of systems characterized by continuous (although short range)

potentials is only slightly more difficult.25'26 In this instance, one must

explicitly calculate the particle trajectories rather than merely follow a

sequence of collision events. One can integrate the 3N coupled second

order differential equations of motion characterizing the system using an

algorithm giving the particle coordinates at the advanced time step by

r,(t+At)'-_- —rI(t—At)+2r,(t)+ %2- 2 FI-j(t) (9.8)

feet‘
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are

0/

0/2 \. 0”’

Fig. 9.12 El Use of periodic boundary conditions in molecular dynamics calcula-

tions.

where F,-j(t) is the force exerted by particle j on particle i at time t. The

time step size is kept smaller than a characteristic collision time. Typical

simulation runs involve roughly 103 time steps. The force term is usually

limited to include only particles within an interaction sphere of radius

L / 2, where L is the cell width (interactions with particle images in the

adjacent cells created by the periodic boundary conditions are included, of

course). _

Such simulations have been performed for systems characterized by a

variety of short range interaction potentials, including the Lennard-Jones

potential and exponential repulsive potentials. The simulation of systems

interacting by way of long range forces—particularly Coulomb forces—is a

bit more difficult, since a very large number of particles may interact

(105 to 106) to produce “self-consistent” fields that act on the particles.28 In

these problems, one must treat the interactions in an average fashion by

calculating an effective force field that acts on each of the particles. For

this reason, the field of microscopic plasma simulation has become highly

specialized, and we make no attempt to review these methods heron’29

Since any such computer simulation is capable of analyzing the detailed

dynamics of only a relatively small number of particles, there is always

some question about how accurately these simulations predict the behavior

of macroscopic sized systems. It has been demonstrated that many of the

bulk properties of matter can be adequately described by such simulations,

although there are notable exceptions, such as the study of fluctuations

whose wavelengths are longer than the cell dimensions of the simulation
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570 El COMPUTER SIMULATION OF PARTTCLE TRANSPORT

system (these arise, e.g., in the study of critical phenomena). Molecular

dynamics simulation has proved to be extremely effective in predicting the

physical properties of systems ranging from simple liquids and plasmas to

systems governed by more complex potentials such as liquid metals,

diatomic liquids, and gases. In fact, such computer simulations have even

experienced some success in predicting the properties of more peculiar

substances such as water.30

9.2.2 El Monte Carlo Simulation of Many Body Systems [1 Monte

Carlo methods have been used to simulate the equilibrium behavior of

many body systems by using random sampling methods to estimate the

ensemble averages characterizing such systemszu"32 Recall that the

average of a dynamic variable with respect to a canonical ensemble can be

written as

[due-Wuhan)

<¢(l‘~)> = —

fdFNe—mtm

One can replace this integration over phase space by a statistical average

over a finite set of discrete particle configurations indexed by “i”:

2e-B”~<">i<i)

2 e_fiVN(i)

l

Then we use Monte Carlo methods to generate and sample from an

ensemble of particle configurations generated by a sequence of successive

random displacements. It is necessary to employ importance sampling by

selecting the configurations according to a prescribed probability distribu-

tion P(i). The most common sampling scheme utilizes a distribution“

e—BV~(1')

P(i)= M

2 e—Bmj)

j=l

then calculates the estimate of the ensemble average as

Mei 2 v(t)

i=1
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DETERMINISTIC TRANSPORT SIMULATION METHODS [:1 571

Typically between 105 and 106 configurations are generated in the simula-

tion.

It should be stressed that although such Monte Carlo methods are quite

useful for calculating equilibrium properties, they are not well suited for

simulating the dynamic behavior of collective processes.

9.2.3 E1 Phase Space Simulation Methods [I An interesting variation on

both statistical and deterministic simulation methods proceeds by directly

tracking a collection of particles as they move about in the six-dimensional

phase space (r, v).33 To accomplish this, one assigns a portion of computer

memory to represent this phase space and keeps track of the particles as

v: v x

x x

(c) (d)

Fig. 9.13 [:1 Phase space simulation method. (a) Assignment of particles to phase

space cells. (b) Distribution of phase space cells. (c) Redistribution and deforma-

tion of cell due to particle collisions and streaming during time step. (d) Reassign-

merit of particles to cell for next time step.
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572 [l COMPUTER SIMULATION OF PARTICLE TRANSPORT

they move from one part of phase space to another as determined by

streaming motion or collision interactions.

To make this more transparent, consider a simple two-dimensional

phase space (x,vx) as shown in Figure 9.13. One first imposes a grid

structure on this phase space, then assigns each of the particles of interest

to one of the rectangular grid elements. Now the time evolution of the

system can be described by noting how the grid elements deform horizon-

tally because of particle motion, and how particles are transferred verti-

cally out of one element to another because of collision events. At the end

of each time step, one returns to a rectangular phase space grid by

reassigning portions of the phase space volumes that have been deformed

as a result of streaming motion. To accelerate this calculation, one can

develop Green’s function matrices, which give the particle density at a time

t+ At in the phase space element (i’, j’) due to a unit density at time t in the

phase space element (i,j). Then the time evolution of the system can be

easily obtained by repeated matrix multiplication.

Since this phase space simulation method is in essence just a bookkeep-

ing scheme to keep track of conservation of particles in phase space, one

can easily see how to generalize it to apply to higher dimension phase

spaces (e.g., including energy dependence). In practice, however, the

method has been applied to date only to analyze one-dimensional, time-de-

pendent transport problems in which relatively short time information is

desired.

[1 PROBLEMS E]

9.1 Determine a rejection technique to sample from the probability distrib-

ution p(x)= e" and determine the efficiency of this technique.

9.2 Estimate the variance in the distance traveled to collision in a uniform

medium.

9.3 How many samples are required to yield a confidence level of 99% that

the estimate of the average distance to collision is within 0.1% of the true

mean?

9.4 Verify the expression on page 552 for the fractional square error

associated with a given estimate 1;”.

9.5 Describe the Monte Carlo algorithm for determining the leakage rate

from the surface of a nonmultiplying sphere with an isotropic and mono-

energetic point source at its origin.

9.6 Describe the Monte Carlo algorithm for determining the criticality

eigenvalue km for a uniform sphere of multiplying material.
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9.7 How could you estimate the total flux in a region using Monte Carlo

methods?

9.8 Demonstrate that the use of the true adjoint solution to an integral

equation as the weighting function in a biased Monte Carlo sampling

scheme will lead to zero variance.

9.9 Devise a boundary crossing routine for zones consisting of concentric

Sp

heres.
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APPENDIX

B A E1

The Wiener-Hopf Method

Consider an integral equation of the form

q>(x)=fwdx'K(x-x’)(p(x’)+g(x), O<x<oo (A.l)

0

Define the Fourier transform

- w _ o . w .

(P k = dxe'k‘ x = dxe‘k" x + dxe'k" x

()Lw q><>f_w (info 80

E<I>_(k)+<I>+(k)

We use the integral equation itself to define <p(x) for x <0. We can now

use the convolution theorem to Fourier transform the integral equation

(Al) to find

<i>.(k)+<'i>_(k)=1?(k)<i>.(k)+§(k)

where

IZ(k)Ef°° dxe”"‘K(x)

—00

If we rearrange, we can write

i<k)<i>.(k)+<i>_(k)=g"(k) (A2)

where we define h~(k)= l — [2(k).

If we assume that w(x)= 0(e“") as x—>oo, then since e(""+“)’r is bounded

if Imk >a, we find that <I>+(k) is analytic for Imk >a, that is, in the upper

half-plane as indicated in Figure A.la.l In a similar manner, if we assume

that q>(x)=0(e"") as x—>--oo, we note that <I>_(k) is analytic in k for

Imk<b, that is, in the lower half-plane indicated in Figure A.lb. The

asymptotic behavior of <p(x) necessary to determine the domains of analyt-

icity of <I>+(k) and (I>_(k) usually is specified in the problem [although

frequently one must first assume this behavior, then verify it after solving

for <p(x)].

E1575
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APPENDIX A El 577

Notice now that if b>a, there will be an overlapping strip of analyticity.

Such an overlapping strip is essential for the successful application of the

Wiener-Hopf technique. Let us furthermore suppose that we can find a

strip within this overlap region in which h(k) is analytic.

_ Now suppose we could decompose h~(k) into a quotient of two functions

h(k)= h +(k)/h_(k), where h +(k) is analytic in some upper half-plane and

h_(k) is analytic in some lower half-plane with a common strip of

analyticity within the previous strip. Then we can rewrite Eq. A.2 as

follows:

h.(k)<i>.(k>+h-(k)(i'>_(k)=§(k)h_(k) (A3)

(see Figure A.lc). Next, suppose we can perform a second decomposition,

this time of g'(k)h_(k) into a difference, §(k)h_(k)= -y+(k)— y_(k), where

7+(k) is analytic in some upper half-plane and y_(k) is analytic in some

lower half-plane with a common strip of analyticity within the previous

strip. Then we can rewrite Eq. A.3 as follows:

h+(k)‘l>+(k)-Y+(k)=—h_(k)‘l>_(k)- Y-(k) (A-4)

in some nondegenerate horizontal strip.

Now define a function

h,(k)<i>+(k) — h(k) for k in the upper half-plane

J(k)— — h_(k)<l>_ (k) -— y_(k) for k in the lower half-plane

We notice that J(k) is an entire function, since it coincides with analytic

functions in both half-planes with a common region (strip). (You can show

this using the identity theorem for analytic functions or by analytic

continuation.) Hence we can determine J (k) completely by using its

behavior at infinity and applying Lio_uville’s theorem.2 Then once we know

J(k), we can solve algebraically for ‘I>+(k) and (h_(k)

(5+(k)=%’ i,_(k)=%kl

and find

¢(x)=2iw fl dke_""‘[<l>+(k)+<l>_(k)]

k E strip

To get the final form of the solution, we complete the remainder of the

steps in the usual integral transform approach by finding the singularities

of <I>+(k) and <I>_(k) and making an appropriate contour deformation of

the original inversion path about these singularities.
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578 U APPENDIX A

Of course the key to the Wiener-Hopf technique is the ability to

decompose functions into quotients and differences of functions analytic

in various half-planes so that we can manipulate Eq. A.2 into the form of

Eq. A.4. To facilitate this, we state and prove two key theorems.3

Theorem I. Decomposition into a Difference. Let a(k) be analytic in the

strip a < Imk <b (see Figure A2) and suppose furthermore that

i /°_°°°du|a(u+io)| exists for every vE(a,b).

ii a(k)/k—>O as k—>oo in the strip uniformly in k for a + 8 < Imk <b — 8,

8 >0 (every closed substrip).

Let a<al <Imk<b1 <b be a substrip. Then

“rowan—ark). al<lmk<b,

where

a+(k)=%f+w+ia'dzfl, Imk>al

7” —oo+ia, Z_k

l ‘i'w‘frlbl a(z)

a_(k)=—f dzz_k, Imk<bl

277i —oo+ib|

Here a+(k) is analytic for Imk>a,, and a_(k) is analytic for Imk<b,.

[C0mment. Notice that condition i ensures that the integrals defining

a+(k) and a_(k) converge, whereas condition ii kills off the contributions

from the ends of the rectangular integration path described below.]

_ k—Plane

1b

ib1

l I? o

C

—R2 ia1 R1

Fig. A.2 1:1 Integration contour for Wiener-Hopf decomposition into a dif-

ference.
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APPENDIX A El 579

Proof. We first establish that a+(k) is analytic for lmk>a,. Notice that

the integrand 01(2) / (z — k) is analytic for all z #k and is jointly continuous

in (z,k). Let G be a closed, bounded subset of lmk>a1. For any kEG,

there exists a 8 > 0 such that |z — k| >8 for all 2 along the integration path.

Thus |a(z)/(z — k)| < |a(z)/8|. By condition i, we therefore have

f°_°°°du|a(u+ ia,)/(z—k)| < 00 for all kE G. Thus the integral defining

01+(k) converges uniformly on every closed, bounded subset of Imk >al,

and we therefore have shown that a +(k) is analytic for Imk >al. A similar

argument demonstrates that a_(k) is analytic for Imk <b1.

To verify the decomposition, let k be any point in the substrip al <

Imk<bl. Now apply Cauchy’s formula to the rectangular contour C as

shown in Figure A.2:

“(k =L.[fR,+m, +fR|+ib|+f—Rz+ibl+f—Rz+ial]“(2)112

27" —R2+ia| R|+ia| R|+ib| R2+ib| Z—k

(A.5)

Now as R,->oo, we can use condition ii (particularly the uniform conver-

gence of the limit) to show

fR|+ib|dzL)

R|+ia| Z_k

—>O, Rl—wo

Similarly we can show

—>0, — R2—> —- 00

f_R2+'-bldz 01(2)

—R2+ia| a_k

thus from Eq. A.5 we find

tx(k)=a+(k)—a_(k) for ai<Imk<bl

Theorem 11. Decomposition into a Quotient. Let u(k) be analytic for

a<Imk<b and suppose that conditions i and ii of Theorem I hold. Let

k|,k2,...,k,I be the zeros (if any) of u(k) that lie in the strip a<Imk<b.

Then there exist functions 01+(k) and ot_(k) with the following properties:

i 01+(k) [a_(k)] is analytic for Imk>al [Imk <bI], where al,bl are the

same as in Theorem 1.

ii a+(k) [a_(k)] is free of zeros in Imk>al [Imk<b,].

iii a(k)=[a+(k)/or_(k)]P(k), where

P(k) =1 if u(k) has no zeros in strip

= (k — k,)(k — k2)- - - (k — k,,) if 111(k) has n zeros in strip
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580 El APPENDIX A

The actual forms of a+(k) and a_(k) are given in the proof.

Proof. Roughly, the proof is as follows. Suppose we could take the log of

01(k) and apply the result of Theorem I to decompose lna(k)='y+(k)—

y_(k). Then we could find a(k)=exp[lna(k)]=exp[y+(k)]/exp['y_(k)]E

a+(k)/a_(k). The essential procedure in the proof is to demonstrate that

we can do just this.

More precisely, by the definition of P(k), the function a(k)/P(k) is

analytic and free of zeros in the strip a<lmk <b. However it vanishes as

1 /k" as k—>oo, hence we cannot take its log because we would run into

difficulties as u=Rek—>:oo. To patch this up, multiply a(k)/P(k) by

(k— M)”2 (k—ib)”/2. If n is even, these are well defined. However if n is

odd, this function has branch points, and we must make sure to define the

corresponding branch cuts so that they do not appear in the strip. That is,

we define (k— M)”2 to be analytic in the plane cut along the imaginary

axis from ai to — i 00. Furthermore (k— ib)"/2 is analytic in the plane cut

along the imaginary axis from ib to +ioo. These branches have been

chosen such that

(k— ib)"/2(k— ia)"/2~k" as k—>oo in the strip

Now define

R(k)z[ ](k—ib)"/2(k—-ia)"/2

It is evident by construction that R(k)~l as k—>oo in the strip, hence

ln R(k) exists and approaches zero as k—>oo. However as we travel along

some horizontal path in the strip, arg[R(k)] may change by some multiple

of 211 (i.e., we get a circling of the origin in the R-plane). We want to

ensure that this does not happen. Suppose as k goes from —oo+iv to

+oo+iv along a line v=constant in the strip (see Figure A.3), the

arg[R(k)] changes by 2'rrN for some integer N [N must be an integer

because R(— 00 + iv)= l =R(+ 00 + iv) by construction]. If N 7&0, we have

R(k) wrapping itself around the origin. Now define

\l/(k)ER(k)(k— ib)'(k— ta)”

Evidently

argtlt(k)=arg[R(k)] +larg[k— ib] - larg[k—ia]

Hence the change in arg[¢(k)] is just

Aarg[.p(k)]*°°*"°=2w1v+1w—1(~w)=2e(1v+l)

—eo+iv
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APPENDIX A El 581

k—Plane

iv

Fig. A.3 1:] Change in the argument of 11¢(k).

Therefore we choose l= — N so that

¢(k)= R(k)(k— ib)_N(k- 1a)”

01'

01(k)

W (k - 1a)‘"/ 2>+"’(1< - ib)<"/2>*” (A.6)

11k>=l

Now we can see by construction that 111(k) is (1) regular in the strip

a < Imk <b, (11) free of zeros in the strip, and (iii) Aarg[¢(u+ 10)] u : 1* g

=0. Hence we conclude that

i f‘fwdu|ln¢(u+iv)| exists.

ii k_'ln¢(k)->0 as k—>oo.

We can therefore apply Theorem I to find

ln11/(k)=tl/+(k)—1]/_(k), a<al<lmk<bl<b (A.7)

where 111,.(k) is analytic for Imk>a,, and 111_(k) is analytic for Imk<b,.
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582 El APPENDIX A

We can then write

¢(k)=exp[¢.(k)—¢_(k)]= But

\l*(k)= [ Z—ig ](k - ia)("/2>+”(k_ ib)<~/2>-~

or

e¢+(k)(k _ ia)_(n/2)—N

“(kl = e¢_(k)(k_ ib)(n/2)—N

(k-k1)"'(k-k,.)

Therefore our final expressions become

a+(k)=e‘l’*(")(k—ia)_("/2)_N

a _ (k) = e“‘-(")(k - ib)‘"/2>' ” (A8)

and our theorem is proved.

Although Theorem 11 might appear awkward to use in a practical calcula-

tion, it can actually be applied rather easily by (i) determining the number

of zeros n of a(k) in the strip, (ii) determining the change in the argument

of R(k) along an infinite horizontal path in this strip (call this change

2'11N), and (iii) using Eqs. A6 to A8 to find

a+(k)

ot_(k)

Example.‘ Consider the decomposition of the dispersion function A(k)

that arises in the Milne problem:

a(k)=

P(k)

A(k)= K0<Imk<Z,

The quotient decomposition theorem suggests that we take lnA(k), then

use a difference decomposition. But any zeros of A(k) will give rise to

singularities of lnA(k). And we know that A(k) has two zeros, tixo.

Hence it is apparent that (k2+1<§)_'A(k) has no zeros in the finite

cut-plane. But we now have a l/k2 behavior at k—>oo (i.e., two more
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zeros), which we must patch up. Therefore we multiply by (k2+2,2) and

define

k2+2§

A k

(k2+1c§) (

By construction, 111(k) is well behaved in the cut-plane and as k—>oo.

We can now apply the difference decomposition Theorem I to write

tl/(k)=\l/+(k)—¢-(k)

il/(k)Eln

where

=% z—k’

41+(k l f°°+"“' dz ‘P(z) Imk>al

—oo+ia|

__1_ 4+4 1(2)

\l/_(k - 2m_f_w+ib1d22_k, Imk<bl

Hence we find

01'

>,+(k) = (k+i2, e

A“) = Mk) (k—i2,)e“’-(")

(A.9)
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51 B 11

Principal Value Integration

and Cauchy Integrals

Consider an integral of the form

1> 11>(11)

f. d“

Ordinarily this integral would not be defined for ve[a,b]. But suppose we

were to perform the integration “symmetrically” in such a way that the two

infinite areas cancel (see Figure B.l). In this sense, we define the principal

value"2 of such an integral as

Pfabd“ (19(11) = lim [Ly—211.1% +£i€dp%(:'%]E£bdpM

IL—V e——>O V lU._V

Example. To illustrate this, let us compute

+‘ ' v—: I

P =1 l — _ +1 _

1;] 11-11 El_x%{n(p PM 1 n(l" V)|v+r}

=let[1n<—£>—1n<-1—»>+1n<1~v>—1n<£>l=1nll:

Integrals of the form

<I>(z)= ifdrM

2m L t—z

where L is some arc in the complex t-plane are referred to as Cauchy

integrals.3 These integrals possess a number of interesting properties pro-

vided (p(t) is “sufficiently well-behaved.” To be more precise, consider the

following definition.

Definition. The function q>(t) is said to satisfy a Holder condition (denoted

by (pEH) if for any two points t1 and 12 on L,

|<P(l2)—(P(t1)|<A|t2_t1|“

584 U
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will)

. WW4

11

1

Fig. 8.1 l] Divergence of the integrand of a Cauchy integral.

where A and it are positive constants. If, furthermore, near the endpoints

of L

<1>*(t)

(1 — C)“ ’

where of’ E H, we say that tp(t) satisfies an H * condition on L (denoted by

(P E H *).

tp(t)= O<a<l

This definition allows us to state a very important theorem concerning

Cauchy integrals.

Theorem. Let q>(t)E H* on L. Then

(I>(z)= fifdl-M

L (1—2)

is analytic in the z-plane cut by L. (Sometimes functions that are analytic

in a cut-plane are referred to as sectionally holomorphic functions.)

Proof See Muskhelishvili, Chapter 2.4

Furthermore, the condition tpEH‘ allows us to define the limiting values

of a Cauchy integral @(z) as 2 approaches the cut L. Consider the Cauchy

integral

<I>(z) ‘jaw (B.1)

_ 2171 C t—z
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z—Plane

sOUI

Fig. 8.2 1:] Contour for the Cauchy integral <1>(z).

where C is a closed contour (see Figure B.2). Now write

_ l (NO—(Poo) P00) d1 _ 11900) d!

@(z)_2'rrifcdt t—z + 211i fCt—z—\P(2)+ 2'rri fCt—z

For 2 E Sin, we have a pole at z so that applying the residue theorem yields

<I>(Z)=‘I’(Z)+<P(lo)

But if z ESQ“, there is no pole in C so that

‘9(2) = ‘I’(Z)

Now consider z E Sin as z—>t0

. 1 93(1) _ 1P00)

+ = = __ __

9 (o— gggfc) 2,”. [Ca ,_ ,0 + at.)

and z E Sou, as z—>t0

_ = . _ 1 <P(l)—<P(to)

‘I’ (’°)-.‘5’.‘,¢<Z>-mlCd’—F.T

But if we recall that Pfcdt(t—to)_'=r'rr_i,i ‘we can extract the factor

<1>(lo)fcdt (t — to)‘l to find

9etro>= % (‘117% 1590.) (9.2)

For a more general statement, we can let 1p(t)=0 along part of the contour
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z-Plane

/

l qr

\

Fig. 8.3 E] Limiting values of a Cauchy integral on an arc L.

(see Figure 8.3) to apply Eq. B2 to any smooth arc L.

In summarythen, if

<1>(z)=%fLdt fl’)

{-2

the limits of the Cauchy integral on the cut become

<1>w0>= % [36% 1 gen.) (B3)

This relation is known as the Plemelj formula.5'6 Alternative forms of this

result are

<I>+(to) _q)_(to)= T00)

<I>+(to)+q>_(to)= % LdttlplLgo

A more heuristic “proof” can be given for the Plemelj formula as

follows. Consider an arc and try to approach it from above (see Figure

B.4). Bend out a little semicircle about to. This leaves a principal value

integral from a to b plus half the residue from the semicircle about the

“pole.” But this is just what the Plemelj formula (B.3) tells us.

Example. Suppose we want to find some function (I>(z) that is analytic in a

cut-plane but with a given discontinuity across the cut L:

¢+(to)_q)_(to)=ll’(to), toEL (B4)
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z—Plane

Fig. 8.4 II] Heuristic “proof” of the Plemelj formula.

Claim. If we assume <pEH*(L), and at infinity (D(z) is of degree not

greater than k, then by the Plemelj formula

(D(z)= [Lat 80) +Pk(z)

I - z

where Pk(z) is a polynomial of degree k.

Proof The only puzzle might be where the polynomial Pk(z) arises. The

boundary condition on <I>(z) determines (I) only to within a polynomial—

not .uniquely. For if we consider two solutions, each analytic in the

cut-plane and satisfying

‘Pf—‘War, ‘I’2+—(D2_=<P

then on the cut, Q(z)E<I>l(z)—<1>2(z) is continuous and analytic. Further-

more Q(z) is analytic in the cut-plane. Thus Q(z) is an entire function of 2.

But that is all we can say. Hence if Q(z)—>2" as |z|—>oo, Liouville’s

theorem tells us that Q(z)=Pk(z), where Pk(z) is a polynomial in z of

degree k. Therefore we have determined <I>(z) only to within a polynomial

Pk(z).

[1 REFERENCES [I

l. E. T. Copson, Theory of Functions of a Complex Variable (Oxford University

Press, London, 1935) p. 128.
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2. N. I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953).
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APPENDIX

11cm

Singular Integral Equations

of the Cauchy Type

Consider an integral equation of the form

avav+£io

§§?§iwoo=nx) (on

We would first like to separate out the singular part of this integral

equation and “solve” it, thereby converting Eq. C.1 into a nonsingular

Fredholm equation. We can add and subtract a term K(x,x) / (y — x) to the

integral to write

K(x’x) ‘P(.)') l K(x’ )—K(x’x) _

avuv+—;—fo;;+;Loi—i;;¢—iun-nv

01'

avan+%2£o§£=nv—iiouannnenv

where the integral on the left-hand side is known as the “dominant” (or

singular) part and the integral on the right is known as the “Fredholm” (or

nonsingular) part. Our primary interest is in solving integral equations of

the form

a(ll)<P(H)+'MfdV(p—£vl =f(ll)) MEL (C2)

77 L V p.

which are referred to as singular integral equations of the Cauchy type.I

We solve Eq. C2 by converting it into a boundary value problem in

complex variables. To this end, define the Cauchy integral

V—'Z

6(2); fLdvM (c3)
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APPENDIX C El 591

If we now use the Plemelj formula, we can rewrite Eq. C.2 in the form

[a(11)+ib(i1)]<I>*(11)—[a(11)—ib(11)]¢>‘(11)=f(11) (<14)

Let us now restrict ourselves to the case in which a and b are real, and

a2+b2¢0, so that we can divide through to find our boundary value

problem

G(11)@*(11)—‘I>_(11)= [a(11)-ib(11)]_'f(11)5f'(11) (C5)

where we have defined

2:’; Eexp[2i®( 11)], (9(11.)Etan_'[ 5E]

G(11)=

Here, G( 11.), f ’( u), a( 11), and b( p.) are known, and we must solve for <I>+(11)

and Q‘( u), the limits of a function @(2) on the cut. Such problems as Eq.

C5 are known as the inhomogeneous Hilbert problem.2

To solve this problem, we must first consider a related problem, the

homogeneous Hilbert or Riemann-Hilbert problem.3 Find a function X (z)

analytic on the cut-plane that is nonzero and such that

X +(11)

_— = G C.6

We first solve this problem, then use the solution to solve the inhomoge-

neous Hilbert problem, Eq. C.5. Finally we determine the solution to the

singular integral equation (C.2) as the difference of boundary values on the

cut, <1>(11)=<1>+(11)—¢I>_(11)-

Ilse Riemann-Hilbert Problem [I Find a function X (2) that is

i Analytic in the cut-plane.

ii Nonzero.

iii Such that X "'( p.)/X _( p.) = G( p.) = exp[2i9( 11)].

For convenience we first fix the argument of G( 11.) so that 9(a)=0. By

tracing along the cut we can then find that 6)(b)= 0171.

Now consider a function

m

I/—Z

T(z)= %j;bdu
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Using the Plemelj formula, we find

CXP[I‘I(IL)]=CXP[%PLbdV?—Ev—ZLii®(ll.) , p.€[a,b]

Therefore exp[I‘(z)] looks like a good candidate for our solution, since

entrain]

exptr-(m

and therefore condition iii is satisfied. But what about conditions i and ii?

Away from the endpoints, P(z) is well behaved. But we should remember

that a principal value integral can blow up like a log near the endpoints.

Thus we must study the endpoint behavior more carefully.

Near 2 =0 we can write

F(z)~@j;"+8ff—z + if” dv@~- @(“)1n(a—z)+r,(z)

7’ +6 V_Z 7r

=¢XP[I‘+(1L)—1‘_(11)]=¢XP[2i@(#)]

and therefore

exp[r(z)]~(a—z)-9<">/"exp[r,(z)]

But since we have set ®(a)=0, there is no trouble.

Near z = b,

@571’) ln(b—z)+l‘2(z)

T(z)~

or

exp[I‘(z) ]~(b.— z)9(b)/"exp[I‘2(z) ] = (b - z)“exp[l‘z(z)]

Thus if a is a positive integer, exp[I‘(z)] has a zero at b of order a. If a is a

negative integer, exp[I‘(z)] has a pole at b of order 11. Therefore to make

X (z) nonzero, we divide out (b— 2)“ to find

x(z)=(b-z)r“exp[% haw] (c.7)

V—Z

This, then, is the solution to the Riemann-Hilbert problem. Now on to the

next phase.
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The Inhomogeneous Hilber' Problem [1 Recall that we wanted to solve

Eq. C.5. But using G( p.)=X +(11)/X_(;1), we find

‘Xi-(1“) + — - _‘ _l

01'

X+(11)<I>+(11)—X_(11)<1>_(11)=[11(11)—ib(11)]_'X_(11)f(11)

If we regard X (z)l1>(z) as analytic in the cut-plane, we can use the Plemelj

formula to find

X(z)<l>(z) = fdv —-—-——————[ ahgilggggg _ z) + Pk(z)

or since we have constructed X (z) to be nonzero,

z =L i ,MQQ. z

(N ) X(z) ] 2m'fLd (a—ib)(p—z) +Pk( ) (C.8)

How do we determine Pk(z)? Well, we know that (D(z) is an analytic

function in the cut-plane that vanishes as 0(1/z) as z—>oo. Hence the

expression above must also do this.

From Eq. C.7 we can see that X(z)~0(l/z"‘) as z—>oo. Therefore we

can distinguish three possible cases:

i a = 0=X(z)—>constant. Then (1>(z)~constant [0(1 /z) + P(z)], which

implies that Pk(z)=0 [since Pk(z)->oo otherwise].

ii a > 0=>X(z)—>z"‘. We now find

Pa_ l(z) =az“_'+bz"‘"2+ - ~-

iii a <0=>X(z)—>l /z|"‘|. Now not only is Pk(z) =0, but we must add

more restrictions, since we want <l>(z)~0(l/z). This typically in-

volves requiring that certain integrals of the X t( )1) functions vanish:

1 X7 ___1_°°i X‘fv"

fifdv (a—ib)(v—z) _ Zrriz "go z”[f1_dV(a—ib)]

to conclude that the integral must vanish as z‘qalH) to kill off the

l/z|"‘I behavior. Therefore the n=0, l,...,a—l terms must be zero.
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594 [1 APPENDIX C

Hence we require

Pk(z)=0, Ldv%g—)IS—"EO, n=0,l,...,a—l

(This is the case that determines the discrete expansion coefficients in

transport theory.‘)

The Solution of the Singular Integral Equation [1 Now all we have to do

to find the solution to the singular integral equation (C2) is to evaluate

<1>( u)=<I>+(u)—‘I>_(u)

where

_ 1 1 X'(v)f(1’)

<1>(z)— m [ 775L811, (a_ib)(v_z) +Pk(z)] (c9)

and

X(z)=(b—z)_"exp[%Lbdv£3—(_%] (010)

El REFERENCES El

1. N. I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953).

2. Ibid, p. 99.

3. Ibid, p. 113.

4. K. M. Case, Ann. Phys. 9, l (1960).
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APPENDIX

II] D [3

A Short Proof

of the Generalized

Langevin Equation"2

Let B, and 132 be two operators (not necessarily commuting). Then

e'(E'*E¢)=e'e'+fld1'e('_’)e‘Eqe'(e'+e”) (DJ)

0

To apply this result, let Q] = [L and E2 = — iPL, where

P o E< o a*>.<aa*>_ lea

Then Eq. D.1 becomes

eit(l—P)L=eitL_ fldTei(t—r)Ll-PLeir(I—P)L (D2)

0

Let us now operate with Eq. B2 on the quantity i(l — P)La:

e"'"_”)"i(l — P)La= e“"-i(1 — P)La— f'd're"('_')'“iPLe"("P)Li(l — P)La

0

(0.3)

But we can identify

f(t) = e"'(1 ‘ P)Li(l — P)La

and note

e'ILiPLa = e"'L<aa*> -<aa*>' l'aEiSZ 'a(t)

and

e"('_’)"iPLf(r) = <f(1')i(l -— P)La*)-<aa"> _ l-a(t — 'r)

E —q>('r)'a(t — 'r)
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996 El APPENDIX 1)

to rewrite Eq. D3 in the standard form of the generalized Langevin

equauon

% - ill-a(t) + fo‘dwm-atr — 1) =f(t) (15.4)

1] REFERENCES 1:]

I. H. Mori, Prog. Theor. Phys. (Japan) 33, 423 (1965).

2. P. Mazur and I. Oppenheim, in IUPAP Conference on Statistical Mechanics

(Tokyo, 1968).
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APPENDIX

E] E U

A Child’s Primer

on the Spectral Theory

of Operators

To begin at the beginning, we must define more precisely the concept of an

“eigenvalue” of an operator A. We usually refer to ll as an eigenvalue of A

if there exist nontrivial solutions to

All’). = All’).

But just what kind of functions 11!)‘ are we going to accept as solutions?

Before talking about the eigenvalues of A, it is necessary to decide just

what class of functions are going to be allowed as eigenfunctions. This

specification must usually be determined from the physics of the problem.

When 1p,((v) is going to be used in the calculation of a particle density

N(v,t), almost the only physical restriction we can demand is that the

corresponding detector response is bounded and nonnegative

0< ~[ooodvvZ,,(v)i,l/,((v)<co

This specific class of functions is referred to as a Banach class or space E].

Birkhoffl suggests that we consider an even more general class: “the space

of all bounded o-additive set functions defined on the Boolean o-algebra of

all Borel subsets of v E[0, 00).”

But most of us are physicists and engineers, not mathematicians. There-

fore we really are adept at manipulating only one class of functions, the

class of all square-integrable functions f(v) such that

f0wdv|f(v)|2<w

[occasionally with a weighting function such as M(v) included]. This class,

of course, is just the Hilbert space of functions familiar from quantum

mechanics. Hence even though physics demands a general function space

such as a Banach space, mathematical convenience demands that we study

[1597
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598 1:] APPENDIX E

instead the eigenvalues of operators A defined on a Hilbert space of

functions. We trust that most of the results we obtain for such a function

space will not be altered appreciably for a more general class of functions.

To this end, we begin with a definition.

Definition. Let El be the class of all complex-valued, square-integrable

(in the Lebesgue sense) functions f (0) defined on vE[0, 00). Furthermore

define an inner product of two functions f (v) and g(v) as

(7.185 fowdvflvnw)

and a corresponding norm as H f ||=(f, f)'/ 2. The class of functions Bl,

when equipped with an inner product, is an example of a Hilbert space of

functions.

Now we study the spectral theory of operators that act on functions

contained in this Hilbert space. First we summarize some rather general

concepts from the theory of Hilbert spaces.H

Linear Operators on Hilbert‘ Spaces [1

Definition. A Hilbert space @ is (i) a linear vector space over the complex

field, (ii) a metric space whose metric is defined from an inner product:

M f ||=(f, f)'/ 2, and (iii) a complete space (containing the limits of all

Cauchy sequences).

i Properties of functions f ESQ.

(a) The norm of a functionfEif; is given by [|f]| =(f,f)'/2.

(b) Two functions f and g 6i) are said to be orthogonal if (f,g)=0.

(c) Two useful inequalities are

108)! < llfll ll gll Schwartz inequality

l|f+ 8" < llfll + ll 8“ Mmkowskl 1Iwquallty

ii Convergence of sequences of functions f 6.9

(a) A sequence of functions f,I converges weakly to a function f,

denoted by f..—*f. if (i) |lf..l| < 00. urn < 00. (ii) lim.-..f.<x)=

f (x) (componentwise convergence), (iii) ||f,,|| <c for all n (uni-

form boundedness of norms). For a weakly convergent

sequence, jL—j, and any gefi, we have (fn, g)—>(f, g).

(b) A sequence of functions j; converges strongly to a function f,

denoted by f,,->f, if for all n >N(e), we have ||f,, —f|| <8.
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[1599

(6)

A sequence of functions f" is said to converge in the Cauchy

sense if given an e>0, there exists an N(e) such that if n,m >N,

then “j;I —fm|| <e. (Note that strong convergence<=>Cauchy con-

vergence=~weak convergence, but weak convergence does not

imply strong convergence.)

iii Operators defined on a Hilbert space of functions.

(a)

(b)

(C)

(d)

(e)

(f)

(g)

(h)

o

o

(k)

(1)

An operator A is a mapping of the function space .6 into .9.

A functional (at least as we use the concept) is a mapping of the

function space to into the scalar field.

The domain of an operator A, 60(A ), is defined to be the class of

all functions for which A f is defined.

The range of an operator A,R(A), is the set of functions gener-

ated by letting A act on all functions f E6D(A).

We define the norm of an operator as ||A||=max{||Af||/||f|l :f

E 6D (A)}.

An operator A is bounded if ||A|| (c.

We define the adjoint A’r of an operator A by requiring that

(A V,8)=(f,Ag)

An operator A is self-adjoint if Al=A.

An operator A is normal if AlA =AA 1.

An operator is closed if for f", fE6D(A), f,,->f=Afn—>Af and

5D(A) is dense in .9.

An operator A is completely continuous or compact if for f",

fEGD(A), L—*f=>A};—>Af, and 6D(A) is dense in Q (As an

alternative definition, A is “compact” if it transforms every

infinite bounded set into a compact set. Hence a compact

operator is kind of a “smoothing” operator. Notice that a

compact operator is tamer than a closed operator, since the

former turns a weakly convergent sequence into one that con-

verges strongly, whereas a closed operator merely ensures that a

strongly convergent sequence will remain strongly convergent

when acted on by the operator.)

To define the inverse of an operator A, consider the equation

Af= g. Then we say that the inverse A“l exists if for any g

contained in the range R(A), there exists a unique f such that

Af=g—that is, we can solve Af=g uniquely for f for any

g E R(A ).

for aIIfEGD(A), gEGMAT)

With this background involving functions and operators defined on a

Hilbert space, we can proceed to study the eigenvalue problem Atl/A =>\tI/>\.
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600 [1 APPENDIX E

The Spectral Theory of Operators Defined on @ E1 The spectral theory of

operators is approached in an indirect manner by. considering the inhomo-

geneous problem

(A —>\)f=g (El)

and looking for the values of A for which we have trouble inverting (A —-A)

to solve for f. The values of A for which this inhomogeneous problem is

“singular” make up the eigenvalue “spectrum” of the operator A irst

consider those values of A for which everything is well behaved— hat is,

the set of all A for which we can invert (A —A) to find f with no difficulty.

This set of “nice” A is called the resolvent set and is defined formally as

follows.

i Resolvent set p(A). The set of all A for which

(a) (A —A)_l exists.

(b) (A —A)"' is a bounded operator.

(c) The closure of the range of A —A,R(A —A)E.i>

All the rest of the complex A-plane is defined to be in the spectrum of the

operator A. From the three conditions necessary for A to be in the

resolvent set p(A ), we can see that there are three possible ways a point can

fail to be in p(A )—hence three types of spectrum corresponding to each of

the ways in which the inhomogeneous problem of Eq. 13.1 might be

singular.

ii The spectrum 0(A). The set of all AéZp(A). We can decompose 0(A)

into three disjoint sets:

(a) The point spectrum ap(A). Those A for which (A —A)_l does not

exist.

(b) The continuous spectrum 06(A). Those A for which (A —A)_l

exists, and the closure of R(A —A)E©, but (A —A)_l is an

unbounded operator.

(c) The residual spectrum 0,(A). Those A for which (A —A)“1 exists,

but R(A —A) is a proper subset of .9.

Several comments are useful at this point to clarify these concepts. First

note that all these sets are disjoint (since the definitions are mutually

exclusive) and that pU [0,, U a, U 0,] = C (the entire complex plane).

The point spectrum corresponds to what we have been calling “discrete”

or “point” eigenvalues, since if (A —A)_l does not exist for some A, this

implies that there must be a nontrivial 111, such that A111,=A¢,. Actually,

only A€op(A) are referred to as “eigenvalues” of A, but we will use the

expression “continuous eigenvalues” from time to time.
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APPENDIX E El 601

The continuous spectrum does not correspond to the condition Atp,\=

AtlrA and, indeed, reflects the unboundedness of (A —A)". Actually, the

terms “point” and “continuous” are misleading because we see that the

concept of a point or continuous set of A does not enter into their

' definition. In fact it is possible to have a “point” eigenvalue in the midst of

a continuous spectrum (an “embedded” eigenvalue) and a AE ac(A) that is

an isolated point (e.g., an eigenvalue of infinite multiplicity). Most of the

time, however, 0,,(A) corresponds to a point set and cc(A) corresponds to a

continuous set.

As we have noted, for AEaC(A) there are no solutions 51/, to AtIl/,I=Atl/A

that are contained in the Hilbert space. However there are solutions to this

equation that lie outside the space but involve singularities such as delta

functions or weak divergences (e.g., the singular eigenfunctions of Case).

Hence whenever we loosely refer to the “eigenfunctions” corresponding to

the continuous spectrum, we are talking about functions that are not

contained in to but may prove useful in expanding functions that are

contained in e.

The residual spectrum 0,(A) usually does not arise in transport theory

applications (fortunately). Our transport operators usually possess enough

“symmetry” to avoid having a residual spectrum. This recognition stems

from a theorem:2 if AIE0,(A), then AI€op(Al). On the other hand, if

A“ E op(A l)=AE 0,,(A ), then o,(A) is empty.

Occasionally one encounters the term “essential spectrum” in the litera-

ture. This refers to the continuous spectrum, eigenvalues of infinite multi-

plicity, embedded eigenvalues, and limit points of isolated eigenvalues.

How do we go about determining whether a given point A is in the point,

continuous, or residual spectrum of an operator? There are several useful

tests.

1 To determine whether A is in the spectrum of A. Consider a sequence

of functions {Q5} E 6D(A) such that ||<ps|l >c >0 and iris—>0. Then if

“(A —A)tp6|]—>0 as 8->0

we can conclude that AEo(A).

ii To determine whether A is in the continuous spectrum of A. Consider

a sequence of functions {(1)5} 66D such that ||tp5|| >c>0 and gas—*0.

Then if

“(A —-A)tp8||->O as 8—>0

we conclude that AE oc(A ). (Notice that to demonstrate that a point

is in the continuous spectrum, we must construct a test sequence

that is weakly convergent. Without the weak convergence, all we
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_

OKU|&

iii

V1

vii

viii

can say is that a point A is in the spectrum of A.) This test is

sometimes referred to as the Weyl criterion.5

To determine whether )1 is in the point spectrum of A, just demon-

strate that there exist nontrivial solutions 44, ES; to

A4’). = All’).

To determine whether there is a residual spectrum, apply the theo-

rem mentioned earlier[i.e., check to see whether N’ Eop(Al) implies

that A E 0,,(A )]. (Notice that this implies that self-adjoint and normal

operators have no residual spectrum.)

A self-adjoint operator possesses a real spectrum o= op U at.

A completely continuous (compact) operator has only a point

spectrum. (In this sense, a compact operator is the direct analogue

to a matrix.)

A completely continuous self-adjoint or normal operator possesses

only a point spectrum, and it also is characterized by a complete,

orthonormal set of eigenfunctions (provided we include the “null

space” corresponding to the eigenvalue }\=0).

The Weyl—von Neumann Theorem.5 If a compact, self-adjoint oper-

ator B is added to a closed operator A, the continuous spectrum of

A remains unaltered: 06(A + B )= ac(A ).
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Absorption coefficient, 21

Acceleration schemes, 469

Accommodation coefficient, 179

Addition theorem, 226

Adiabatic approximation, 361

Adjoint, 369

boundary conditions, 371

operator, 370

solutions, 371

Albedo, 18

boundary condition, 18

problem, 1 12

Amnesia kernel, 152

Analytic continuation, 7 8, 126

Angular current, 8, l4

density, 8

Dirac 8-function, 52

dispersion, 156

flux, 14

redistribution, 439

sweep, 448

ANISN, 47 3

Anisotropic scattering, 118

Approximate methods, 366ff

Area method, 427

Associated Legendre polynomials, 226

Asymptotic relaxation process, 280

mode, 82

transport theory, 244, 299

Attenuation coefficient, 160

Average intensity, 159

Balescu-Lenard collision term, 25, 186

equation, 186

Basis function, 236, 479

higher order, 498

Lagrange, 461, 494

local, 479

BBGKY hierarchy, 34

Bethe formula, 156

BGK model, 179, 324

generalized, 180

Bhatnager-Gross-Krook model, 179, 324

Bickley-Naylor function, 55, 507

Birnodal distribution, 353

Binary collision, 22

approximation, 169

Black body distribution, 164

Bochner theorem, 122

Boltzmann collision term, 25, 168ff

derivation, 169

equation, 22

generalized, 203

linearized, 174

Boltzmann H-theorem, 172

Born approximation, 146

Boundary condition, 15

adjoint, 371

albedo, 18

essential, 483

extrapolated, 223

implicit, 18, 435

infinity, 19

inhomogeneous, 17

interface, 18

Mark, 233

Marshak, 232

natural, 483

periodic, l8

reflecting, 17

vacuum, 15

Boundary value problem, 322

fast neutron, 336

full-range, 84, 98

half-range, 104

partial-range, 104

Bounded operator, 599

Bragg diffraction, 150

Branch cut, 79

Brownian motion, 191

generalized, 190

Burnett equations, 262, 273

Case history, 541

Caseologists, l 18

Case‘s method, 93

Cauchy convergence, 599

Cauchy integral, 584 ff

Cauchy principal value, 97, 584

Cauchy problem, 285

Cauchy type singular integral equation,

5 90f f

Cell-averaged expressions, 432

Cell-centered differences, 432
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INDEX

Central limit theorem, 551

Cesare limit, 81

Chandrasekhar l-l-function, 112

Chapman-Enskog method, 257

Charged particle transport, 23

Chord length, 62

Chord method, 61

Closed operator, 599

Closure property, 104

Coarse mesh rebalance, 469

Coherent scattering, 147

Collective phenomena, 1, 141

Collisional invariant, 174, 218, 258

Collision expansion, 72

frequency, 13

kernel, 12

operator, 141

probability, 60

probability method, 504, 505ff

rate density, 57

Collision term, 141

Balescu-Lenard, 25, 186

Boltzmann, 25, 168ff

Fokker-Planck, 25, 183

linear, 144

Compact operator, 599

Completely continuous, 294

operator, 599

Completeness, 101

full-range, 101

half-range, 105

Confidence level, 552

Conjunct, 370

Conservation equations, fluid, 253, 255

Conservative form, 438, 444

Constrained ensemble, 195

Continuity equation, 220, 254

Continuous eigenvalues, 97

Continuous slowing down, 23, 153, 327

Continuous spectrum, 97, 600

Continuum description, 217

Contraction, 219

Convergence, 598

Cauchy, 599

finite element, 485

strong, 598

weak, 598

Convolution theorem, 78, 135

Cooperative process, 142

Corner Milne problem, 122

Corona equilibrium, 165

Correlations, 6

Cosine current approximation, 519

Couette flow, 183

Criticality eigenvalue, 283, 309

perturbation, 375

problem, 283

Cross section, 12

macroscopic, 12, 145

microscopic, 12, 145

scattering, 146, 328

thermal neutron, 146

transport, 221

Cumulative distribution function, 536, 540

Current density, 8

angular, 8, 14

cosine approximation, 519

partial, 9

phase space, 8

Cylindrical shell kernel, 55

Damping matrix, 194

Debye length, 321

Decomposition, Wiener-Hopf, 88, 578

difference, 578

quotient, 579

Degenerate kernel, 153, 411

N term, 153, 411ff

one tenn, 152

Delayed neutrons, 150

Delta function, 52

Dense gases, 181

Density, 3

collision rate, 57

ensemble, 30

kinetic energy, 253

mass, 25 3

microscopic, 197

microscopic phase space, 197

momentum, 25 3

net current, 9

number, 3

particle, 3, 5

phase space, 5

probability, 6, 540

radiant energy, 159

reaction rate, 13

spectral energy, 362

total particle, 8

Van Hove, 147, 198
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Density matrix, 31

Detailed balance, 149

Detector response function, 287

Deterministic simulation, 567ff

Diagrammatic perturbation theory, 36

Diamond difference formula, 4 3 3

Diffuse reflection, 178

Diffusion approximation, 222

coefficient, 222

equation, 222

length, 80

length experiment, 282

quasilinear, 361

theory, 219

Dirac chord method, 61

Dirac delta function, 52

Direct problem, 4

Direct product, 495

Discontinuous angular elements, 499

basis functions, 499ff

spatial elements, 500

trial function, 399

Discrete eigenvalues, 95, 600

Discrete exponential mode, 82

Discrete integral coupling, 519

Discrete integral transport, 51 1 ff

Discrete ordinates method, 406,

422ff

Dispersion law, 125, 309

relation, 125

Distribution, 9 3

Distribution function, 2, 5, 540

bimodal, 353

black body, 164

chord length, 62

cumulative, 536, 540

doublet, 6

Fermi-Dirac, 158

Maxwell-Boltzmann, 6

particle, 5

Planck, 164

probability, 2, 540

single particle, 31

Domain, 599

DOT, 473

Double PN method, 427

Doublet distribution, 6

Downstream shock region, 351

DPN methods, 235

Dynamical variable, 29

Eddington factor, 225

Effective multiplication factor, 283

Eigenfunctions, 97, 600

Eigenvalue, 280, 600

artificial, 297

continuous, 600

criticality, 283, 309

discrete, 93, 600

multiplication, 283

perturbation, 367

problem, 280, 600

pseudo-discrete, 129

spatial, 305

spectrum, 600

time, 290ff

variational estimate, 384, 389

Einstein coefficients, 162

Elastic scattering, 147

Electron conduction, 156

Electron density oscillations, 317

Electron excitation, 164

Electron impact processes, 164

Electron transport, 154

Emission coefficient, 21, 160

Emission rate density, 58

ENDF, 152

Energy density, 253

Energy space, 481

En functions, 55

Ensemble, 29

average, 30

density, 30

Enskog-Boltzmann equation, 181

Equation of motion, fluid, 255

Equilibrium, 6, 164

corona, 165

local thermodynamic, 164

radiative, 164

Ergodic problem, 30

Error estimates, 396

Escape probability, 59, 506

Essential boundary condition, 483

Essential spectrum, 601

Euler equations, fluids, 256

variational, 381

Euler-Lagrange equations, 3 81

Evaluated Nuclear Data File, 152

Even-parity flux, 490

Exp(iBr) approximation, 299

Expectation values, 548
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INDEX

Exponential integral function, 55

Estimators, 560

Extrapolated boundary, 223

endpoint, 109, 223

Extrapolation length, 110, 223

Fast neutron transport, 330

boundary value problem, 336

elastic scattering, 337

equation, 330

with fission, 338

inelastic scattering, 338

Fermi age theory, 153

Fermi-Dirac distribution, 158

Fermi pseudopotential, 146

Fick’s law, 222

Finite difference, 431

cell-centered, 432

diamond, 433

positive, 436

time, 522

weighted, 437, 523

Finite element method, 479ff

with discrete ordinates, 459

subspace, 494

Finite range potentials, 176

First-flight escape probability, 60

First-flight kernel, 52

plane source, 54

point source, 53

First order perturbation, 368

First variation, 380

Fission chain reactions, 20

neutrons, 150

operator, 330

source term, 150

spectrum, 20

Fixed scattering center, 66

Flat flux approximation, 506

Fluctuation, 6

Fluctuation dissipation theorem, 192

FLURIG, 511

Flux, 14

angular, 14

even parity, 490

negative, 436, 471

odd parity, 490

oscillations, 471

particle, 14

phase space, 14

Flux limiter, 249

Flux synthesis, 402

Fokker-Planck collision term, 25, 183

generalized, 202

Fokker-Planck equation, 25, 183

Forced wave propagation, 183, 315

Fourier's law, 261

Fourier transform, 77

inversion, 78

Fredholm equation, 69, 590

integral equation, 136, 590

variational principle, 384

Free molecular flow, 357

Free surface, 15

Free wave propagation, 315

Frequency matrix, 194

Friction coefficient, 191

F ull-range boundary value problem, 84, 98

completeness, 101

orthogonality, 98

Functional, 379, 599

derivative, 382

Fundamental lemma of calculus of variations,

381

Galerkin formulation, 406, 462

weighting, 406

Gas dynamics, 22

linearized, 311

mixtures, 181

Gas-surface interactions, 178

Gaussian quadrature set, 425

Gauss’s law, 10

Generalized BGK model, 180

Generalized Boltzmann equation, 203

Generalized Brownian motion, 190

Generalized diffusion equation, 241

Generalized Fokker-Planck equation, 202

Generalized hydrodynamics, 265, 269

Generalized Langevin equation, 194

derivation, 595

frequency-modulated, 207

nonlinear, 207

Generalized master equation, 207, 240

Generalized Peierls’ equation, 303

Generalized perturbation theory, 378

Generalized transport law, 270

Generic form of transport equation, 9

Geometric buckling, 299

Grad l3-moment method, 263, 349
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Green's function, 52

Grey approximation, 66, 166

atmosphere model, 66

Gross-Jackson model, 180

Group constants, 407

Half-range boundary value problems, 104

completeness, 105

orthogonality, 111

Hangelbroek method, 13 2

Hard potential, 176

Hard-sphere model, 568

H-condition, 584

H*-condition, 585

Heat flux vector, 261, 271

Heat transfer, 355

Heavy gas model, 410

Hermitian scheme, 494

H-function, 112

Hilbert expansion, 264

Hilbert norm, 71

Hilbert paradox, 241, 265

Hilbert-Schmidt kernel, 294

Hilbert space, 598

Holder condition, 584

Horowitz primary model, 410

I'I-theorem, 172

Hydrodynamic level, 32

Hydrodynamics, 253ff

equations, 255

generalized, 265, 269

variables, 348

Identity theorem, I35

Implicit boundary condition, 18, 435

Importance function, 373

Importance sampling, 557

Incoherent scattering, 147

Indirect sampling, 545

Inelastic scattering, 147

operator, 329

Infinite medium spectrum equation, 284

time relaxation, 286

gases, 312

Infinity boundary condition, 19

Inhomogeneous boundary condition, 17

Inhomogeneous Hilbert problem, 106, 593

Initial conditions, 15

Initial value problem, 285

bounded geometry, 302

Integral equation, 56

Fredholm, 69, 590

method, 357

singular, 590ff

statistical solution, 550

Volterra, 331

Integral form of transport equation, 56, 480

Integral law than, 480

Integral law formulation, 480

Integral transform method, 74, 76

Integral transport method, 504

discrete, 511

Interaction kernel, 178

Interface boundary condition, 18

coupling method, 515

current method, 517

Intrinsic source, 11

Inverse operator, 599

Inverse power method, 310

Inverse problem, 4

Inviscid fluid, 256

Ionized gas, 24

Irreversible relaxation, 149

Isotropic point source, 53

Isotropic scattering, 152

Isotropic sources, 152

Iterative scheme, 423

11 method, 516

Jordan’s lemma, 81

Kernel, 52

amnesia, 152

cylindrical shell, 55

degenerate, 153, 411

first-flight, 52

Hilbert-Schmidt, 294

Horowitz primary model, 410

interaction, 178

line source, 56

modified synthetic, 152

Pincherle-Goursat, 412

secondary model, 411

separable, 152

spherical shell, 55

symmetrized, 294

synthetic model, 152

Ki function, 55, 507

Kinetic energy density, 253

Kinetic equation, 6, 27
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INDEX

Mass attenuation coefficient, 160

Mass continuity equation, 254

Mass density, 253

Mass emission coefficient, 160

Master equation, 13

generalized, 240

Matrix Riemann-Hilbert problem, 326

Maximum absorption theorem, 306

Maximum buckling theorem, 126, 301

Maximum frequency theorem, 308

Maxwell-Boltzmann distribution, 6

Maxwell model, 179

Maxwell potential, 176

Maxwell's moment equation, 218, 349

MCN, 565

Mean chord length, 62

Mean cosine of scattering angle, 220

Mean free path (mfp), l2

transport, 221

Mean number of secondaries per collision,

12

modeled, 204

quasilinear, 361

renormalized, 203

Kinetic theory, 27

level, 32 '

renormalized, 203

Kirchhoff's law, 165

Klimontovich method, 36

Knudsen iteration method, 357

Knudsen number, 264

Lagrange basis functions, 461, 494

Lagrange interpolation polynomials, 494

Lagrange multipliers, 399

Lagrangian, 381

approximate, 394, 404

Lagrangian finite elements, 494

Laguerre polynomials, 408

Landau damping, 322

Landau equation, 186

Landau unstable, 360

Langevin equation, 191

Langevin method, 191

Law of large numbers, 549

Laws of mechanics, 28

Lee‘s method, 355

Legendre's condition, 382

Lethargy, 328

Linear attenuation factor, 508

Linear collision operator, 144

Linear response theory, 36, 199

Line source kernel, 56

Liouville equation, 30

operator, 30

Liouville theorem, 88

Local basis functions, 494

Local thermodynamic equilibrium (LTE),

21, 164

Lorentz-Boltzmann equation, 144

Lorentz gas, 66

Low density approximation, 202

Mach number, 350

Macroscopic cross section, 12, 145

Many body problem, 28, 190, 567

Mark boundary condition, 233

Markov approximation, 244

Markovian limit, 202

Markov process, 185

Marshak boundary condition, 232

Memory matrix, 194

Method of moments, 349ff

MGN, 565

Microscopic cross section, 12, 145

Microscopic density, 197

Microscopic dynamics simulation, 568

Microscopic phase space density, 197

Milne problem, 83, 84ff

comer, 122

variational solution, 392

Minkowski inequality, 598

Modeled kinetic equations, 204

Modeled problems, 45

Moderators of A>1, 333

Modified propagator, 196

Modified synthetic kernel, 152

Molecular chaos, 169

Molecular dynamics, 568

Moments, 349

Momentum density, 253

Monte Carlo method, 533ff

gas dynamics, 565

integral equations, 550

integrals, 547

integral transport, 553

statistical mechanics, 570

MORSE, 561, 564

Mott-Smith method, 350, 352

Multidimensional geometry, 122, 449, 562
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Multigroup approximation, 325, 421

constants, 408

energy method, 407

transport equation, 67

Multiple-scattering expansion, 71, 555

Multiplication eignvalue, 283

Multiplication factor k, 283, 310

effective keff, 283

Natural boundary condition, 483

Navier-Stokes equation, 261

Negative fluxes, 436

fix—up, 436

Net current density, 9

Neumann iteration, 71

series, 71

Neutron thermalization, 284

transport, 20, 145

wave, 282

wave experiment, 282, 307

Nonequilibrium statistical mechanics, 28,

190

linear collision, 144

Liouville, 30

norm, 599

normal, 599

projection, 190, 238

range, 599

scattering, 328

self-adjoint, 599

spectrum of, 600

streaming, 49

time evolution, 48

Optical thickness, 52

Orthogonal, 598

Orthogonality relations, 598

full-range, 98

half-range, l 11

Oscillating source, 129

Overlapping groups, 409

P, equations, 221

Partial current density, 9

Partial-range boundary value problem, 84,

104

Nonlinear coupling, 206

Nonlinear transport, 346 ff

Nonlocalized process, 26

Non-Markovian, 193

Norm, 598

function, 598

operator, 599

Normalization condition, 94

integral, 99

Normal operator, 599

Number density, 3

Odd-parity flux, 490

One-angle quadrature set, 424

One-group transport equation, 65

One-speed diffusion equation, 222

transport equation, 64, 65

ONETRAN, 459, 473

Opacities, 22

Operator, 599

adjoint, 369, 599

bounded, 599

closed, 599

compact, 599

completely continuous, 599

fission, 330

inelastic scattering, 329

inverse, 599

Particle continuity equation, 220

current density, 8

density, 3, 5

distribution function, 5

importance function, 373

streaming, 47

Peierls‘ equation, 57

generalized, 303

Periodic boundary conditions, 18

Perturbation theory, 366ff

critical problem, 375

diagrammatic, 36

first-order, 368

generalized, 367, 378

higher order, 378

in statistical mechanics, 37

Phase mixing, 322

Phase space, 5

current density, 8

density, 5

flux, 14

simulation methods, 571

Photoexcitation, 162

Photoionization, 162

Photon scattering, 162

Photon transport, 21, 158

high energy, 167
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INDEX

Physical analogue approach, 553

simulation, 534, 553

Picket fence model, 166

Pij method, 515

Pincherle-Gou rsat kernel, 412

Planar attenuation factor, 508

Planck distribution function, 164

Plasma, 24

dielectric function, 187

frequency, 319

oscillations, 317

Plemelj formula, 102

Pn approximation, 225

Pn equations, 225, 228

general form, 233

numerical solution, 476ff

Pn method, 225, 474

boundary conditions, 231

double, 235

equivalence with Sn, 474

Poincare-Bertrand formula, 136

Point source kernel, 53

Point spectrum, 600

Population inversion, 162

Positive difference schemes, 437

Power iteration, 310

Precursor shock foot, 355

Pressure tensor, 254

Primary model, 410

Principal value, 584

Principle of the argument, 134

Probability density, 6, 540

Probability density function, 540

Probability distribution, 6, 540

Projection, 238

invariance, 424

operator, 37, I90, 193, 238

Prompt fission neutrons, 150

Propagator, 48, 196

modified, 196

time, 48

Proton gas, 322,410

Pseudo-discrete eigenvalues, 129

Pulsed neutron experiment, 281

Quadrature set, 424

Gaussian, 425

one-angle, 424

two-angle, 427

Quantum mechanical systems, 31

Quasilinear approximation, 361

diffusion equation, 362

kinetic equation, 362

theory, 359

Q-value, 557

Radiant energy density, 159

total, 160

Radiant heat flux vector, 160

Radiation field, 159

average intensity, 159

hydrodynamics, 165

pressure tensor, 165

specific intensity, 159

Radiative equilibrium, 164

processes, 161

recombination, 162

Radiative transfer, 21, 158

equation, 160

Radiative transitions, 162

Random force, 194

Random number, 539

Random sampling method, 539

Random walk process, 1, 142

Range of operator, 599

Rankine-Hugoniot relations, 352

Ray effect, 471

Rayleigh-Ritz method, 387

Ray-to-ray transfer, 439

Reaction rate density, 13

Reactivity, 377

Rebalance factors, 470

Reciprocity relation, 56, 506

Reduced functional, 394

Reduced Lagrangian, 394, 404

Reentrant geometries, 17

Reflecting boundary, 17

Rejection methods, 545

Relaxation process, 280

asymptotic, 280

infinite medium, 284, 312

irreversible, 149

length, 80

spatial, 282

time, 281

Renormalized kinetic theory, 203

Residual spectrum, 600

Resolvent integration method, 130

Resolvent set, 600

Resonance broadening theory, 363
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Response matrix methods, 520

Riemann-Hilbert problem, 106, 591

matrix, 326

Riemann sheet, 126

Rigorous transport theory, 130

Ritz principle, 384

Roussopoulos variational principle, 386

Russian roulette, 559

Rutherford scattering, 183

Sample, 541

Sampling, 539

from continuous distributions, 542

from discrete distributions, 542

indirect, 545

random, 539

Scattering, 146

coherent, 147

elastic, 147

incoherent, 147

inelastic, 147

photon, 162

Rutherford, 183

Scattering cross section, 146, 328

Scattering operator, 328

Scattering probability function, 12

Schwartz inequality, 598

Schwinger variational principle, 387

Secondary model, 411

Secondary particles, 12

Second order form of transport equation,

490ff

variational principle, 493

Second variation, 382

Sectionally holomorphic function, 585

Self-adjoint operator, 599

Self-diffusion, 142, 219

process, 142

Separable kernel, 152, 286

modified, 152

Separation of variables, 75, 292

Series expansion, 408

Shear flow, 182

Shock waves, 350

in plasma, 354

Single particle distribution function, 31

Single particle variables, 197

Single relaxation time model, 180

Singular eigenfunction method, 93ff

Singular integral equation, 101, 590ff

of Cauchy type, 590ff

Slowing down, 327ff

continuous, 23, 153, 327

time-dependent, 334

Sn method, 425. See also Discrete ordinates

method

Sobolev space, 481

Soft potentials, 176

Solvable problems, 46

Sound propagation, 183, 313

forced, 183, 315

free, 183, 315

Source iteration, 437

Spatial eigenvalues, 305

processes, 304

relaxation parameters, 282

Spectral energy density, 362

Spectral representation, 297, 600

theory, 597ff

Spectrum, 600

classification, 294, 600

of operator, 600

Specular reflection, 178

Spherical harmonics, 226

method, 225,474. See also PN method

Spherical shell kernel, 55

Splitting, 559

Standard deviation, 552

Static pair correlation, 198

Stationary neutron thermalization, 284

Stationary point, 380

Statistical simulation, 533ff. See also

Monte Carlo method

Step function difference scheme, 437

Stimulated emission, 162

Stosszahl ansatz, 169

Streaming, 47

operator, 48

term, 26, 141

in vacuum, 48, 49

Strong convergence, 598

Strong shock waves, 350

Sturm-Liouville equation, 383

Substantial derivative, 11

Summational invariant, 174

Supertherrnal particle transport, 279, 327ff

Supervariational method, 402

Surface-to-surface Green’s function, 521

Symmetrixed kernel, 294

Synthesis methods, 402

flux, 402
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variational, 405

Synthetic kernel model, 152, 323, 410ff

Tamarkin-Shmulyan theorem, 304

TART, 565

TDA, 523

Tent functions, 495

Test particle process, 142

Thermal conductivity, 271

Thermal neutron cross section, 146

THERMOS, 51 1

THREETRAN, 451

Time average, 29

Time correlation function, 32

Time-dependent problem, 123

slowing down, 334

solutions, numerical, 522ff

Time differencing, 522

Time evolution operator, 48

Time propagator, 48

Time relaxation, 285

infinite medium, 285, 312

parameter, 281

Time reversal symmetry, 149, 189

TIMEX, 523

Total particle density, 8

Transfer equation, 218, 349

Transient mode, 82

Transport, 1

electron, 154

high energy photon, 167

neutron, 20, 145

nonlinear, 346ff

photon, 21, 158

supertherrnal, 327

Transport coefficients, 32, 195, 224

Transport cross section, 221

Transport equation, 6, 11, 195, 224

multigroup, 67

one-group, 65

second order form, 490ff

weak form, 462, 480, 482

Transport law, 224

generalized, 270

Transport operator, 369

Transport theory, 1, 27, 38

asymptotic, 244, 299

rigorous, 130

TRANZIT, 523

Trapezoidal quadrature, 425

Trial function, 385

discontinuous, 399

TRIDENT, 459, 474

TRIPLET, 459,474

Truncated potentials, 176

Two-adjacent half-spaces problem, 113

Two-angle quadrature set, 427

TWOTRAN, 474

Uniqueness, 19

Unit direction vector, 6

Upscattering, 68

Upstream shock region, 351

Vacuum boundary condition, 15

Van Hove density correlation, 146, 198

Variable Eddington factor, 225, 249

Variance, 552

Variance reduction method, 556

Variation, first, 380

higher order, 400

Variational methods, 37 8ff

derivation of approximate equations, 394

estimate of eigenvalues, 384, 389

estimate of integral quantities, 389

inhomogeneous problem, 386

Milne problem, 392

Variational principle, 379

Ritz, 384

Roussopoulos, 386

Schwinger, 387

second order, 493

supervariational, 402

Variational synthesis, 405

Velocity integrated flux, 14

Vlasov equation, l88ff

linearized, 24, 318

Vlasovlike approximation, 201

Vlasov-Maxwell equation, 189

Volterra equation, 331

Weak convergence, 598

Weak coupling approximation, 201

Weak derivative, 379

Weak form of transport equation, 462, 480,

482

Weak plasma turbulence, 363

Weighted difference, 437, 523

Weighted residual method, 403, 405

Weisskopf evaporation model, 329
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Well-posed problem, 19

Weyl criterion, 295, 601

Weyl-von Neumann theorem, 296,

602

Wiener-Hopfers, 118

Wiener-Hopf method, 86, 575ff

X-function, 107, 591
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